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1 Institut de Recherche sur les Systèmes Atomiques ou Moléculaires Complexes, Université
Paul Sabatier et UMR 5626 du C.N.R.S., F-31062 Toulouse cedex 4, France.

2 Present address: Facultad de Fı́sica, Pontificia Universidad Católica de Chile, Casilla 306,
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A new class of models describing the dissipative dynamics of an open quantum
system S by means of random time evolutions of pure states in its Hilbert space
H is considered. The random evolutions are linear and defined by Poisson pro-
cesses. At the random Poissonian times, the wavefunction experiences discontin-
uous changes (quantum jumps). These changes are implemented by some non-
unitary linear operators satisfying a locality condition. If the Hilbert space H of
S is infinite dimensional, the models involve an infinite number of independent
Poisson processes and the total frequency of jumps may be infinite. We show
that the random evolutions in H are then given by some almost-surely defined
unbounded random evolution operators obtained by a limit procedure. The
average evolution of the observables of S is given by a quantum dynamical
semigroup, its generator having the Lindblad form. (1) The relevance of the
models in the field of electronic transport in Anderson insulators is emphasised.
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1. INTRODUCTION

Kinetic models with random collision events are widely used to study
transport properties of systems of classical particles. (2) They generally lead,
if the motion between collisions is ballistic (respectively, anomalous diffu-
sive) and the time delay between consecutive collisions has a finite mean
value, to a conductivity given by the Drude formula (3) (resp., by the ano-
malous Drude formula (4)). It is natural to ask whether one can construct
quantum kinetic models which can describe electronic transport in solids



exhibiting different conductivity behaviors than that given by the Drude
formula, such as, for instance, disordered solids in the strong localization
regime (Anderson insulators). (5) We study in this paper a quantum kinetic
model describing non-interacting electrons in Anderson insulators coupled
to external particles like phonons. The model is built in such a way as to
give the classical kinetic theory back, such as Boltzmann’s equation, when
quantum effects can be neglected. The central question addressed in the
work, which constitutes a preliminary step towards a kinetic theory of
hopping transport, concerns the infinite volume limit of the model. Since
the model is related to random wavefunction models studied in quantum
optics (6, 7) and quantum measurement theory, (8–12) and may apply as well to
other physical systems interacting with their environment, we shall present
our results in the general framework of open quantum systems theory.

The dissipative dynamics of an open quantum system S can be
described in two different ways. The first and most popular approach con-
sists in coupling S to a reservoir R. (13) The density matrix rtot of the total
system S+R is assumed to follow a Liouville-von Neumann equation, i.e.,
one assumes that S+R is closed. A state of S is specified by the reduced
density matrix r, defined as the partial trace of rtot over the reservoir’s
Hilbert space. r does not describe a single system but a statistical ensemble.
By tracing out the degrees of freedom of R in the Liouville–von Neumann
equation, one obtains an integro-differential equation for r (Nakajima–
Zwanzig equation (14)). Using a suitable Markov approximation to eliminate
memory effects, this equation is then transformed into a simpler first-order
linear differential equation, called the master equation. (13) One can justify
rigorously the Markov approximation in the so-called van Hove limit, i.e.,
the weak coupling limit with an appropriate time rescaling (15–17) (see
also (18, 19) for other limits). The reduced dynamics does not conserve pure
states. It has been shown by Lindblad (1) that the Markovian master equa-
tion has the form:

dr
dt

=(−LH+Cg) r=−i[H, r]+
1
2
C
a

([Lar, L
g
a]+[La, rL

g
a]). (1)

H is the Hamiltonian of S (including the energy shifts due to the coupling
with the reservoir), and La are some operators acting on the Hilbert space
H of S, called the Lindblad operators in the sequel. An alternative
approach to the same problem is based upon stochastic evolutions of pure
states. The state of S is specified by a random wavefunction (RW) in H,
evolving according to a linear or nonlinear stochastic Schrödinger equation.
Different stochastic evolutions have been proposed in the last two decades
in various fields of physics and mathematics, especially quantum optics, (6, 7)
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quantum measurement theory, (8–12, 20–24) the theory of open quantum sys-
tems (16) and electronic transport in solids. (25–27) Consistency with the master
equation approach requires that the pure state evolution gives the density
matrix evolution back after averaging over the dynamical noise. Apart
from being intuitively appealing, the RW models provide quite efficient
tools for solving master equations numerically. Actually, one is led to
integrate N coupled differential equations for the wavefunction, where N is
the dimension of H, for a large enough number of realizations of the
dynamical noise. For large N, this is generally much more efficient than
integrating the N×N coupled master equations for the density matrix.
However, the RW models are more than simple mathematical or numerical
tools: they describe the real evolution of the system S under continuous
monitoring by means of measurements (photons counting, homodyne or
heterodyne detections). (28) The randomness of their dynamics is a con-
sequence of our ignorance of the result of a measurement in quantum
mechanics. At the end of the eighties, experiments on the fluorescence of
single ions in magnetic traps have shown records of ‘quantum jumps’
between an excited atomic state and a lower state, occurring at random
times. (28) These sudden jumps—which were already assumed to exist by
Einstein in his paper on the A and B atomic coefficients (29)—correspond to
the absorption or emission of a photon by the ion at the corresponding
transition. Such direct observations have motivated the study of the RW
models in quantum optics.

The physical situation which motivates our work is electronic trans-
port in strongly disordered solids. (30) It is well known (5, 31) that the spectrum
is pure-point and the electronic eigenfunctions |iP are exponentially
localized in such solids (Anderson localization). The electrical conductivity
thus vanishes at zero temperature. At non zero temperature T > 0, trans-
port occurs via phonon-assisted hopping of electrons from one localized
eigenstate into another. At small T, a phenomenological argument due
to Mott (32) shows that the hopping conductivity s is given by s=
s0 exp(−(T0/T)c), where the exponent c depends on the dimension d
(d=1, 2, 3) only and T0 is a constant which depends on the localization
length and the density of states at the Fermi energy. The regime of validity
of Mott’s formula is called the variable range hopping regime. Variable
range hopping transport occurs for instance in lightly doped compensated
semiconductors at low temperature, in amorphous solids, (30) in two-dimen-
sional electron gases in zero or strong magnetic field, (33, 34) and in the qua-
sicrystal i-AlPdRe. (35) The electrons in the disordered potential created by
the ions, impurities or defects are coupled to low energy acoustic phonons.
Since phonons do not carry current, the study of transport requires the
knowledge of the electron dynamics only. The system S of all electrons is
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thus an open quantum system. If we ignore electron-electron interactions, it
can be shown (36) that, at low enough temperature, its dissipative dynamics
is correctly described by the master equation (1) with a=(i, j), i ] j, and:

LiQ j=`CiQ j | jPOi|,

where CiQ j is the transition rate from the eigenfunction |iP to the eigen-
function | jP. Starting from the electron-phonon interaction Hamiltonian,
CiQ j can be calculated perturbatively by means of Fermi golden rule. (37) It
decreases exponentially with the distance |i− j| between the localization
centers of |iP and | jP, and depends strongly at low temperature on their
energies Ei and Ej. The widely used relaxation time approximation, which
amounts to replace all the CiQ j’s by a single damping constant, is thus
completely unjustified in hopping transport.

In this paper, the dissipative dynamics of an electron in an Anderson
insulator under electron-phonon or another coupling is described by means
of electronic quantum jumps between the localized eigenfunctions |iP,
occurring at random times. Between jumps, the electronic wavefunction
evolves according to Schrödinger’s equation with an effective non self-
adjoint Hamiltonian describing both the disordered potential and some
complex energies (inverse lifetime of the eigenfunctions). The rate of
occurrence of quantum jumps are given by the above transition rates CiQ j.
Unlike in the models studied in, (6–8) the stochastic evolution for the wave-
function is linear, which makes the mathematical analysis easier. The price
we pay for this convenience is the non conservation of the norm of the
random wavefunction. A fundamental question addressed by mathematical
physicists in the theory of solids concerns the study of the spectrum and of
the time evolution of the relevant electronic observables at the thermody-
namic limit. Letting the volume of a strongly disordered solid tend to infi-
nity, an infinite number of localized eigenfunctions |iP with energies close
to the Fermi energy EF comes into play. Moreover, the double sum
;i, j CiQ j diverges, which means that an infinite number of jumps occur in
any finite time interval in our kinetic model. Our main result shows that,
provided the discontinuous changes of the wavefunction at the jumps are
sufficiently ‘local’, the stochastic dynamics of the wavefunction is also well-
defined in this case, and is given by an almost surely unbounded random
evolution operator, obtained by a limit procedure. We also prove that the
average evolution for the density matrix is given by the Lindblad master
equation (1).

Our paper is organized as follows. Section 2 is devoted to the descrip-
tion of the model. Section 3 gives our main results on the stochastic evolu-
tion of wavefunctions for infinite dimensional Hilbert spaces (infinite
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volume limit). Section 4 concerns the averaged evolution; we obtain in
particular the Lindblad generator of the average dynamics. It is shown in
Section 5 that the RW can be found by solving a stochastic time-dependent
Schrödinger equation with a kicked Hamiltonian. The model is compared
with other known RW models in Section 6. The last section before the
conclusion contains the technical proofs of the two main results of Sec-
tions 3 and 4.

2. THE MODEL

2.1. The Stochastic Scheme

Let us consider a quantum system, with separable Hilbert space H
and Hamiltonian H, coupled to its environment. We shall assume that
H=V+T is the sum of a (possibly unbounded) self-adjoint operator V,
with dense domain D(H) and pure point spectrum, and of a bounded self-
adjoint operator T. Let {|iP; i ¥ L.} be an orthonormal basis of H formed
by the eigenfunctions of V, where L. is an infinite subset of Zd. If the
system is a doped semiconductor, we can think of L. as the impurity sites
in the host crystal Z3; then H acts on the Hilbert space H=a2(L.) and
{|iP; i ¥ L.} is the canonical basis (see below). For each pair (i, j) ¥ L ×2

. ,
we denote |i− j| the Euclidean distance between i ¥ Zd and j ¥ Zd. Instan-
taneous jumps take place at some random times

· · · [ t −niQ j [ · · · [ t −1iQ j [ 0 < t1iQ j [ · · · [ tniQ j [ · · · , (i, j) ¥ L ×2
. .

These jumps are labelled by pairs (i, j) ¥ L ×2
. of indices and by an integer n,

which counts the number of jumps (i, j) that occurred since the initial time
t=0. Let us set t0iQ j=0 and denote by sniQ j=tniQ j−tn−1iQ j the time delays
between two consecutive jumps (i, j) (or, if n=0 or 1, the time delay
between the initial time t=0 and the jump (i, j) immediately preceding or
following it). The positive numbers sniQ j, for any n ¥ Z and i, j ¥ L., are
assumed to be mutually independent random variables distributed accord-
ing to the exponential law p(ds)=CiQ je −s CiQ jds, where CiQ j \ 0 depends
on (i, j) but not on n. In other words, for any fixed (i, j), the jump times
tniQ j, n ¥ Za are given by a Poisson process with parameter CiQ j. The tran-
sition rates CiQ j are considered here as phenomenological parameters. In
concrete situations, they can be computed by using the Fermi golden rule.
They contain all the quantitative physical information on the interaction of
the system with its environment (e.g., the coupling constant). If the envi-
ronment is a thermal bath, they depend on its temperature.

Each jump modifies in a discontinuous way the wavefunction of the
system. These discontinuous changes are implemented by some bounded
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operators WiQ j (called jump operators in the sequel). More precisely, if the
system’s wavefunction is |kP ¥H just before a jump (i, j), it becomes
WiQ j |kP just after it:

jump (i, j): |kPQWiQ j |kP. (2)

The jump operators describe the qualitative effects on the system of its
coupling with its environment (e.g., how it is affected by the absorption or
the emission of external particles like phonons, photons, ...). They do not
depend on the damping rates or on the temperature of the bath.

Between two consecutive jumps, the system evolves according to the
Schrödinger equation with the Hamiltonian H+K, where K is a bounded
operator describing some complex renormalizations of the energies due to
the coupling with the environment (damping operator). We will restrict
ourself in this work to systems with a norm-preserving average dynamics,
namely, such that E ||k(t)||2=1, where E is the average over all times tniQ j.
As we shall see below, in order that ||k(t)||2 be conserved in average, the
damping operator K must be given, up to a self-adjoint operator, by:

K=
1
2i

C
i, j ¥ L.

CiQ j (W
g
iQ j+1)(WiQ j−1). (3)

This means that K is not self-adjoint.
The wavefunction at time t, tp [ t < tp+1, is thus formally given by:

|k(t)P=e −i(t− tp)(H+K)WipQ jpe
−i(tp− tp−1)(H+K) · · ·Wi1Q j1e

−it1(H+K) |kP, (4)

where |kP is the wavefunction at time t=0, 0 [ t1 [ · · · [ tp [ tp+1 are the
times of occurrence of any jump, and (ip, jp) ¥ L

×2
. is the (random) pair of

indices corresponding to the actual jump that takes place at time tp. As it
will be clear below, the formula (4) is meaningful if:

C — C
i, j ¥ L.

CiQ j <. . (5)

It will be seen in the next section how to define the random wavefunction
when C=..

2.2. Notations

From a mathematical point of view, it is convenient to represent
each sequence of random variables (tniQ j)n ¥ Z

a by a counting process
(NiQ j(t))t ¥ R. (38) Here tniQ j, n ¥ Za, are the discontinuities of the counting
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function NiQ j(t). For any compact interval I … R, NiQ j(I) is the (random)
number of jumps (i, j) occurring at times t ¥ I, namely:

NiQ j(I)= C
.

n=−., n ] 0
q(tniQ j ¥ I), (6)

where q is the characteristic function (q(P)=1 if the property P is true,
0 otherwise). We set NiQ j(t)=NiQ j(]0, t]) if t \ 0 and NiQ j(t)=
−NiQ j(]t, 0]) if t < 0. Then NiQ j(t) is an integer-valued non decreasing
right-continuous function of t vanishing at t=0. Moreover, NiQ j(t)=
> t+0+ dNiQ j(y), where the random measure dNiQ j(y) is defined by means of
the generating functional:

Fi, j(f)=E exp 1 i F t
0
f(y) dNiQ j(y)2=exp 1CiQ j F

t

0
(e if(y)−1) dy2 .

The stochastic scheme described above is thus specified by the infinite set
of independent Poisson processes (NiQ j(t))t ¥ R with parameters CiQ j, for
all i, j ¥ L.. If (5) holds, the staircase function:

N(t)= C
i, j ¥ L.

NiQ j(t), (7)

which counts the total number of jumps between 0 and t, defines a Poisson
process of parameter C. The left discontinuities of this function are the
jump times tp above. As follows from the independence of the Poisson
processes (NiQ j(t))t ¥ R, the probability that the p-th jump is a jump (i, j) is:

P((ip, jp)=(i, j))=
CiQ j

C
. (8)

2.3. Examples

In order to be more concrete, let us give two examples corresponding
to physical systems for which the above scheme applies.

2.3.1. Classical Drude Model

Consider a system initially in an eigenstate of the Hamiltonian H=V.
We assume that T=0, so that |iP are eigenfunctions of H, and restrict our
analysis to wavefunctions of the form |k(t)P=|iP, i.e., we exclude all the
quantum linear combinations of the eigenfunctions |iP (classical limit). Let
CiQ i=0 and:

WiQ j=1+(|jP−|iP)Oi|, i ] j ¥ L.

K=0.
(9)
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The jump operators WiQ j simply transform |iP into | jP and leave unchan-
ged all other eigenfunctions |kP, k ] i. Let the system evolve from t=0
until time t according to the quantum jumps scheme described above. Since
we restrict ourself to initial wavefunctions |k(0)P=|iP, i ¥ L., the wave-
function |k(t)P at time t \ 0 is equal, up to a phase factor, to |i(t)P,
i(t) ¥ L.; in particular, its norm ||k(t)|| is conserved. Actually, |k(t)P
remains unchanged up to a phase as long as there is no jump. When a jump
occurs, it may (or may not) jump from an eigenfunction |iP into another
eigenfunction | jP. The stochastic dynamics is thus completely specified by a
set of random numbers pi(t), i ¥ L., with pi(t)=1 if |k(t)P is proportional
to |iP and 0 otherwise. If the system is an electron in the conduction band
of a periodic crystal, the eigenfunctions |iP are the Bloch wavefunctions
|nc, kP, where nc is the conduction band index and k is the crystal momen-
tum. Then, the above stochastic evolution coincides with that given by the
Drude model of a free electron subject to random collision events. (3)

Let us define the average population pi(t) in the eigenfunction |iP as
the average of pi(t), pi(t)=E pi(t). In order to determine the equation
satisfied by the pi’s, let us compute the amount of change dpi=dp+i −dp −i
of pi(t) between times t and t+dt. The gain dp+i is equal to the sum over
j ¥ L. of the probability CjQ i dt that a jump (j, i) occurs between t and
t+dt, multiplied by the probability pj(t) that this jump modifies the wave-
function. Similarly, the loss dp −i is equal to the sum over j ¥ L. of the
probability CiQ j dt that a jump (i, j) occurs between t and t+dt, multi-
plied by pi(t). Thus pi(t) satisfies Pauli’s master equation:

dpi
dt

= C
j ¥ L., j ] i

(CjQ i pj(t)−CiQ j pi(t)). (10)

The above considerations clearly still hold if the system is initially in an
impure state given by a diagonal density matrix, r(0)=;i pi(0) |iPOi|.

This example shows that the stochastic model above can be seen as a
quantum generalization of a classical kinetic model. In the quantum case,
the classical ‘random collisions’ between particles of the system and of its
environment are replaced by ‘random quantum jumps’.

2.3.2. The Anderson Model

Let us consider a crystal the atoms of which are located at the vertices
of a Bravais lattice in dimension d. Using labelling of the lattice sites by
integers, we can identify it with Zd. Some random sites are actually
occupied by impurities instead of atoms of the original species. These sites
form an infinite (random) set L. … Zd. At low enough temperature, con-
ducting electrons are almost all in the impurity band, i.e., they are in linear
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combinations of impurity orbitals. Neglecting the other electrons and
assuming only one orbital par impurity, the one-electron Hilbert space H
is identified with a2(L.). The electronic Hamiltonian can be chosen as the
Anderson Hamiltonian:

H= C
x ¥ L.

Ex |xPOx|+ C
x, y ¥ L.

txy |xPOy|.

|xP, x ¥ L, are the canonical basis vectors, describing an electronic state in
the impurity orbital at site x. Ex are independent identically distributed
random variables and txy are hopping terms. The randomness of the site
energies Ex, describing disorder in the solid, must be distinguished from the
dynamical randomness above, which describes dissipation. If the system is
submitted to a uniform electric field E(t), a term q E(t) X must be added to
H, q being the charge of the carriers and X the position operator. Then, H
becomes unbounded. A first choice for the basis vectors |iP is to take them
equal to the canonical basis vectors |xP. Then L.=L. and H is non-
diagonal, i.e. T ] 0. As is well-known, for zero field and strong enough
disorder (i.e., for large enough ODE2xP/txy), the eigenfunctions of H with
energies close to the Fermi energy are exponentially localized. (5, 31) Another
interesting choice for the basis vectors |iP is to take them equal to these
localized eigenfunctions, so that T=0. This choice is motivated by an
adiabatic approximation, which implies that the generator of the average
evolution commutes with the Liouvillian LH=i[H, .] and that the jump
operators are simple functions of the eigenvectors of H. (36) One can
argue (36) that this approximation is valid at low enough temperature in the
variable range hopping regime. The set L. can be considered as the set of
the localization centers of |iP, i.e., as the lattice points i ¥ L. where the
amplitude of |iP is maximum.

We now describe how the electrons in the impurity band are kicked by
phonons. We take CiQ i=0 and:

WiQ j=1+|jPOi| (11)

for any i, j ¥ L.. K is chosen according to (3), i.e.

K=−
i
2

C
i ¥ L.

Ci |iPOi|− i C
i ] j ¥ L.

CiQ j | jPOi|. (12)

The effect of K is thus to add an imaginary part − i Ci/2 to the energies
Ei=Oi| H |iP and to introduce a hopping term − i CiQ j. Here Ci=;j CiQ j

is the inverse life-time of the |iP and describes how instable is this localized
wavefunction due to the coupling with phonons.
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3. STOCHASTIC EVOLUTION OF WAVEFUNCTIONS

3.1. Main Hypothesis on Ci Q j and Wi Q j

If the double sum C in (5) is infinite, the total number N(I) of jumps
in any compact interval I … R is infinite with probability one. For example,
it is shown in the appendix (lemma 4) that, if there exists b > 0 such that
;j CiQ j \ b for infinitely many indices i ¥ L., then the sup over i of
;j NiQ j(I) and thus N(I) are infinite with probability one. The random
times tp and the random indices (ip, jp) in the formula (4) giving |k(t)P are
therefore not well-defined. The idea for computing the random evolution
in H when C=. runs as follows: (1) forget all jumps (i, j) such that
(i, j) ¨ L, where L … L. is a finite ‘box’ in L., and determine the wave-
function at time t using (4); (2) let the size of the box increase to reach the
limit L ‘ L.. The main result of this section states that the limit exists
provided suitable conditions on the CiQ j and WiQ j are made.

Let us denote L=F(L.) the set of all finite subsets of L.. L is
ordered by inclusion. We define the limit L ‘ L. by means of the increasing
sequence (Lm)m ¥N in L, with:

Lm={i ¥ L.; |i| [ m}, m ¥N. (13)

More precisely, a net (|kLP)L ¥ L in H is said to converge to |kP if the
sequence (|kLmP)m ¥N in H converges to |kP.

We will assume in what follows that CiQ j, WiQ j, K and T satisfy the
following requirements.

Assumption A. There is r1 > 0 such that:

sup
i ¥ L.

C
j ¥ L.

CiQ j e r1 |i− j| <., sup
i ¥ L.

C
j ¥ L.

CjQ i e r1 |i− j| <..

Assumption B. For any i, j, k, l ¥ L.,

|Ol| (WiQ j−1) |kP| [ (fil+fjl)(fik+fjk),

where fij=fji > 0 is such that there is r2 > 0, supi ¥ L. ;j ¥ L. fije r2 |i− j| <..

Assumption C. There is r3 > 0 such that:

sup
i ¥ L.

C
j ¥ L.

|Oi| (T+K) |jP| e r3 |i− j| <.,

sup
i ¥ L.

C
j ¥ L.

|Oi| (T+Kg) |jP| e r3 |i− j| <..
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Assumption A is satisfied if the rates CiQ j tend to 0 exponentially as
|i− j|Q.. Assumption B means that: (1) WiQ j affects appreciably the
l-component of |kP, i.e. Ol| WiQ j |kP is appreciably different from Ol | kP,
only if l is ‘exponentially close’ to i or j; (2) WiQ j |kP differs appreciably
from |kP only if k is ‘exponentially close’ to i or j. For instance,
WiQ j=1+|jPOi| satisfies B with fij=dij (Kronecker delta).

If H is not bounded, some care about domains must be taken. Let
B(H) be the Cg-algebra of bounded operators on H. Consider the
subalgebra of B(H):

D(LH)={A ¥B(H);AD(H)…D(H) and [H,A]:D(H)QH is bounded}.
(14)

This subalgebra is the ultraweakly dense domain of the Liouvillian LH (see
ref. 44, Proposition 3.2.55):

LH(A)=i[H, A], A ¥D(LH). (15)

Assumption D. T, K and WiQ j are elements of D(LH) for any
i, j ¥ L..

3.2. Notions of Quantum Trajectory and of Random Propagator

Let (X, S, P) be the probability space for the infinite set of the
Poisson processes (NiQ j(t))t ¥ R for all i, j ¥ L.. The expectation (mean)
value on this space is denoted by E. For any s ¥ R, we define a bimeasur-
able bijection T(s) from X into itself, by translating simultaneously all the
counting functions NiQ j(t):

NT(s) t
iQ j (t)=3

Nt
iQ j(t−s)+Nt

iQ j([−s, 0[) if s \ 0
Nt

iQ j(t−s)−Nt
iQ j([0, −s[) if s < 0.

It follows from the stationarity of Poisson processes that the probability
measure P is invariant under the group of translations {T(s); s ¥ R}.

The state of the system is specified by a random wavefunction (RW),
i.e. by a measurable function Y: t ¥ XW |YPt ¥H with a P-integrable
square norm || |YPt||2. Two RW that differ on a set of t’s of probability
zero are said to be equivalent. The space K=L2(X, H, P) of the equiv-
alence classes of RW is isomorphic to the tensor product:

K=L2(X, P) éH.
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In other words, the coupling of the system with its environment forces us to
enlarge the system’s Hilbert space, by taking its tensor product with
L2(X, P). If Y1, Y2 ¥K, then tW tOY1 | Y2P

t and tW |Y1P
t tOY2 | are

integrable and weakly integrable, respectively. The time translations act on
K through a group of unitaries {S(s); s ¥ R}, with:

|S(s)YPt=|YPT(s) t for almost every (a.e.) t ¥ X. (16)

The dynamics of the system is given by a map t ¥ [0,.[ WY(t) ¥K.
Using the same terminology as in ref. 7, we call the map t ¥
[0,.[ W |Y(t)Pt ¥H for a fixed outcome t ¥ X a quantum trajectory.
Note that quantum trajectories are discontinuous in the quantum jumps
schemes.

Let us assume that quantum trajectories do not interact, i.e. that for
any 0 [ t0 [ t, |Y(t)Pt depends only on |Y(t0)Pt for the same t. This prop-
erty is satisfied in the scheme described in Section 2.1 and in all schemes for
which the RW is the solution of a stochastic Schrödinger equation with
classical noise. In the scheme of Section 2.1, |Y(t)Pt depends moreover
linearly on |Y(t0)Pt. The quantum trajectories are thus completely
determined by a family {U(t, t0); t \ t0 \ 0} of linear evolution operators
U(t, t0) on K, satisfying:

|U(t, t0)YPt=Ut(t, t0) |YPt, (17)

where Ut(t, t0) are some operators on H. The quantum trajectory
tW |Y(t)Pt such that |Y(t0)Pt=|kP ¥H is given in terms of the evolution
U(t, t0) by:

|Y(t)Pt=|U(t, t0)(1 é |kP)Pt=Ut(t, t0) |kP.

Here 1 is the constant function with value one on X. Since the jump opera-
tors are not assumed to be unitary, the operators Ut(t, t0) are not unitary,
and it can be expected in some cases that they be unbounded on a set of
non-zero probability (we shall see below that this is indeed happens).
Hence some care about domains must be taken. For any L ¥ L, the projec-
tor on the finite subspace span{|iP, i ¥ L} is denoted by PL=;i ¥ L |iPOi|.

Definition 1. Let U={U(t, t0); t \ t0 \ 0} be a family of linear
operators U(t, t0) on K satisfying (17) for any Y in their domains
D(U(t, t0)). Let F …K be the subspace of all finite linear combinations of
the tensor products f é |kP with f ¥ L.(X, P) and |kP ¥H. U is called a
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Random Propagator if F …D(U(t, t0)) for any t \ t0 and, for any
0 [ t0 [ y [ t, |kP, |jP ¥H and Y ¥F, one has:

(RP1) |kP ¥4s \ 0 D(Ut(t0+s, t0)) for a.e. t ¥ X;

(RP2) U(t, t)=1;

(RP3) U(t, y)(1 é PL) U(y, t0)YQU(t, t0)Y as L ‘ L.;

(RP4) U(t+s, t0+s)Y=S(−s)U(t, t0)S(s)Y for any s \ −t0;

(RP5) Ut(t, y) |kP and Ut(y, t0) |jP are independent H-valued ran-
dom variables;

(RP6) ||U(t, t0)(1 é |kP)||K=||k||H;

(RP7) t ¥ R+ WU(t, 0)Y ¥K is continuous.

The condition (17) and axioms (RP1) and (RP6) imply that F …

D(U(t, t0)) for any t \ t0. Note that F …D(U(t, t0)) does not implies
(RP1), which states the existence of a t-independent subset Xk … X of
probability one on which Ut(t, t0) |kP exists for all t’s.

The axioms (RP1) to (RP3) imply that for any |kP ¥H and t0 \ 0,
there is for a.e. t ¥ X a unique quantum trajectory tW |Y(t)Pt=Ut(t, t0) |kP
such that |Y(t0)Pt=|kP. Moreover, Y(t): tW |Y(t)Pt belongs to K for
any t \ t0.

The axioms (RP4) and (RP5) mean that quantum trajectories define
a stationary process with independent increments in the Hilbert space
H (recall that P is invariant under T(s)). Since ||U(t, t0)(1 é |kP)||2K=
E ||U(t, t0) |kP||2, the condition (RP6) means that ||k(t)||2 is conserved on
average.

Remark 1. In practice, the operators U(t, t0) are defined by giving,
on a set of probability one, the random operators Ut(t, t0) on H which
appear in (17). By axiom (RP4), these operators satisfy for any s \ 0 and
a.e. t:

Ut(t) |kP — Ut(t, 0) |kP=UT(s) t(t+s, s) |kP. (18)

To study quantum trajectories, one must define another topology on
K than the norm topology considered in Definition 1. The net (YL)L ¥ L in
K is said to converge pointwise to Y ¥K if || |YLPt−|YPt||Q 0 as L ‘ L.
for any t in a subset XY … X of probability one. For any L ¥ L, let
yWYL(y) be a map from R+ to K and let 0 [ t [.. One says that
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(YL(y))L ¥ L converges pointwise to Y(y) uniformly with respect to y on
[0, t[ if:

lim
L ‘ L.

sup
0 [ y [ t

|| |YL(y)Pt−|Y(y)Pt||=0

for a.e. t ¥ X. As follows from the dominated convergence theorem,
pointwise convergent ||.||K-bounded nets are norm convergent.

Proposition 1. Let {UL; L ¥ L} be a family of random propagators
satisfying the following conditions for any |kP ¥H and 0 < t <.:

(i) (UL(y, t0) 1 é |kP)L ¥ L converges pointwise uniformly with respect
to (y, t0) on [0, t]2;

(ii) there exists g ¥ L2(X, P) such that ||UtL(y, t0)|kP|| [ g(t) for any
L ¥ L, 0 [ t0 [ y [ t and a.e. t ¥ X;

(iii) for any 0[ y[ t, supL ¥ L ||(UL(t, y) 1éPLŒUL(y)−UL(t)) 1é |kP||K
Q 0 as LŒ ‘ L..

Let U(t, t0) be the operators on K satisfying (17) such that, for any
|kP ¥H,

|U(t, t0)(1 é |kP)Pt=Ut(t, t0) |kP= lim
L ‘ L.

UtL(t, t0) |kP for a.e. t ¥ X.

Then {U(t, t0); t \ t0 \ 0} is a random propagator. Moreover, the same
statement holds if axiom (RP6) is replaced by the following condition:

(RP6’) there is c > 0 such that ||U(t, t0) 1 é |kP||K [ c ||k||.

Proof. By assumptions (i-ii) and the dominated convergence theorem,
U(t, t0) 1 é |kP is in K and ||UL(y, t0) 1 é |kP||K Q ||U(y, t0) 1 é |kP||K.
The pointwise uniform convergence of UL(y, t0) 1 é |kP and the
s-additivity of the measure P imply that the random operators Ut(y, t0)
satisfy (RP1). Moreover, U(t, t0) satisfies (RP6) or (RP6’) if this true for
all UL(t, t0), L ¥ L. Let Y ¥F and t0 [ y, t0 [ t. By the dominated
convergence theorem again, ||(UL(y, t0)−UL(t, t0)) Y||K converges to
||(U(y, t0)−U(t, t0))Y||K uniformly with respect to y on [t0, t]. Since the
first norm tends to zero as yQ t for any L ¥ L, this implies (RP7). The
same argument shows that:

lim
LŒ ‘ L.

||(U(t, y) 1 é PLŒ U(y)−U(t)) 1 é |kP||K

= lim
L ‘ L.

lim
LŒ ‘ L.

||(UL(t, y) 1 é PLŒUL(y)−UL(t)) 1 é |kP||K=0.
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Assumption (iii) has been used to exchange the limits with respect to LŒ
and L. This proves (RP3). Now U clearly satisfies (RP2) and (RP5).
For any |kP ¥H and s \ 0, denote Xk, s the subset of X such that
P(T(s) Xk, s)=1 and UT(s) t

L (t, t0) |kP converges to UT(s) t(t, t0) |kP for any
t ¥ Xk, s. By translation invariance, one has P(Xk, s)=P(T(s) Xk, s)=1. As
a result, S(−s)UL(t, t0) 1 é |kPQS(−s)U(t, t0) 1 é |kP pointwise. By
unicity of the limit and (17), (RP4) is true for any Y=f é |kP with
f ¥ L.(X, P), |kP ¥H. L

3.3. Existence of the Random Propagator When C=.

Let L … L. be is finite box of L.. Set:

NL(t)= C
i, j ¥ L

NiQ j(t).

(NL(t))t ¥ R is a Poisson process of parameter CL=;i, j ¥ L CiQ j. For any
fixed (t0, t) ¥ R×X, the left discontinuities of the counting function NL(t)
are denoted by:

· · · [ t −pL [ · · · [ t −1L [ t0 < t1L · · · [ tp−1L [ tpL [ · · ·

We set t0L=t0 and denote by spL=tpL−tp−1L the time delay between the
(p−1)-th and the p-th jumps in L (or, if p=0 or 1, between the time t0
and the jump immediately preceding or following it). For each p ¥ Za, the
random couple of indices (ipL, j

p
L) ¥ L

×2 is defined by demanding that the
p-th jump is a jump (ipL, j

p
L), i.e.

tnipLQ jpL
=tpL for some n ¥ Za. (19)

Since the processes (NiQ j(t))t ¥ R, i, j ¥ L, are independent, the random
variables s1L, ..., s

p
L and (i1L, j

1
L), ..., (i

p
L, j

p
L) are mutually independent.

Let us forget all jumps (i, j) ¨ L in the stochastic dynamics. Assume
that the RW is a.s. equal to |kP ¥H at time t0: |YL(t0)Pt=|kP for a.e. t.
Then, the RW at time t in the stochastic scheme of Section 2 is given by
|YL(t)Pt=UtL(t, t0) |kP, with:

UL(t, t0)=3
U0(t− t0) if t0 [ t < t1L
U0(t− tpL) WipLQ jpL

U0(s
p
L) · · ·Wi1LQ j1L

U0(s
1
L) if t0 < tpL [ t < tp+1L

(20)
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and:

U0(s) — e − is(H+K), s \ 0. (21)

Proposition 2. Let assumption D hold. The operators on K asso-
ciated with the UL(t, t0)’s by (17) are denoted by UL(t, t0). Then UL(t, t0)
satisfy the axioms (RP1–RP5) of Definition 1 and, for any t0 [ t,
UL(t, t0) ¥D(LH) almost surely.

Proof. It follows from the self-adjointness of H and from a Dyson
expansion of U0(s) in powers of K that ||U0(s)|| [ e s ||K|| for any s \ 0. The
Dyson series exists since K ¥D(LH) (see Proposition 5 below). This yields:

||UL(t, t0)|| [ wNL([t, t0])
L e (t− t0) ||K||, (22)

with wL=maxi, j ¥ L ||WiQ j ||. Since NL([t, t0]) <. a.s., UL(t, t0) is a.s.
bounded and a.s. in the subalgebra D(LH). The fact that UL(t, t0)(1 é |kP)
belongs to K and (RP3) are consequences of (22) and of the dominated
convergence theorem. (RP4) follows from the transformation rules of tpL
and (ipL, j

p
L) under the time translations: if t0 T(s) t and t0 0 t0+s, then

tpL0 tpL+s and (ipL, j
p
L)0 (ipL, j

p
L), which imply:

UtL(t) |kP — UtL(t, 0) |kP=UT(s) t
L (t+s, s) |kP

for any s \ 0. L

The main result of this section is the following theorem. It is proven in
Section 7.

Theorem 1. Let assumptions A to D hold and |kP ¥H. Then
(UL(t, t0) 1 é |kP)L ¥ L converges pointwise as L ‘ L. uniformly with
respect to (t, t0) on compacts ofR2

+. Let us denote its limit byU(t, t0) 1 é |kP:
tW Ut(t, t0) |kP. For any r \ 0 and g > 0 such that r [ r1g/(d+g), r [ r2
and r [ r3, there is a random constant ct > 0 such that the following prop-
erty holds for a.e. t ¥ X:

|Oi| Ut(t, t0) |jP| [ ctt min {|i|, | j|}g e −r |i− j|, i, j ¥ L.. (23)

Suppose moreover that |kP ¥D(H) and that there is 0 < r0 < r1/8, r0 [ r2,
r0 [ r3 such that the domain D(H) of H is invariant under the operator:

Dr0= C
i, j ¥ L.

e −r0 |i− j| |iPOj|. (24)

Then U(t, t0) |kP ¥D(H) almost surely.
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Remark 2. The subset of X of probability 1 on which UtL(t, t0) |kPQ
Ut(t, t0) |kP for all t’s depends on k.

Remark 3. The random evolution operator U(t) may be unbounded
with probability one. Actually, let H=K=0 and WiQ j=1+|jPOi|. It
follows from (20) that:

Oj| U(t) |iP \ lim
L ‘ L.

Oj| 11+ C
NL(t)

p=1
| jpLPOi

p
L|2 |iP=dij+NiQ j(t).

By the lemma 4 in the appendix, ||U(t)||2 \ supi ¥ L. {1+2NiQ i(t)+
;j ¥ L. N2

iQ j(t)} is a.s. infinite.

Remark 4. Under the assumptions of the theorem, (UL(y, t0)g |kP)L ¥ L

converges pointwise uniformly w.r.t. (y, t0) on compacts, for any |kP ¥H.
In fact, one obtains the adjoint operators UL(t, t0)g of UL(y, t0) by inverting
t and t0 and replacing WiQ j and K by their adjoints in (20). Since Wg

iQ j

satisfy assumption B if and only if this is true for WiQ j, Theorem 1 is also
true for the adjoints UL(t, t0)g.

It follows from Theorem 1 and from the s-additivity of the measure P
that, with probability one, UL(t)Q U(t) strongly on the dense subspace D
of finite linear combinations the basis vectors |iP, i ¥ L.. Assume that
||WiQ j || [ 1 for any i, j ¥ L.. By (22), the random operators UL(t) are uni-
formly bounded in L. Therefore U(t) is bounded with probability 1.
By an E/3 argument, UL(t)Q U(t) strongly on H a.s. (which means:
UtL(t) |kPQ Ut(t) |kP for any |kP ¥H on a k-independent set of t’s of
probability one). Similarly, UL(t)g converge strongly on H and therefore
UL(t)g Q U(t)g strongly a.s.. The statement below is obtained from (20)
and an E/3 argument.

Corollary 1. Let the assumptions of Theorem 1 hold. If K is self-
adjoint and WiQ j is unitary for any i, j ¥ L., then U(t, t0) is almost surely
unitary.

4. AVERAGE EVOLUTION OF OBSERVABLES

The aim of this section is to establish a link between the above
quantum jumps approach and the master equation approach of open
quantum systems.
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4.1. Markov Equations and Semigroups

Let us first recall few basic facts on the master equation approach.
Consider a quantum system in contact with a thermal bath. If the decay
time of correlations of the coupling agent of the bath is much shorter than
the typical relaxation time of the system, memory effects can be neglected
and the evolution of the density matrix r(t) of the system is approximately
given by a first-order linear differential equation: (13)

dr(t)
dt

=Lgr, (25)

where Lg is a linear operator from the Banach space L1(H) of trace-class
operators on H into itself. More precise conditions under which such a
so-called Markovian master equation gives a correct description of the
dynamics of open quantum systems have been given elsewhere. (15–19) The
solution r(t)=Fg(t) r(0) of (25) is given by a one-parameter semigroup
{Fg(t); t \ 0} of positive linear operators Fg(t): L1(H)Q L1(H). Actually,
it has been shown by Kraus (40) that for physical Markovian master equa-
tions, the operators Fg(t) satisfy a condition stronger than positivity, called
complete positivity. An operator Jg on L1(H) is completely positive (CP)
if for any positive integer m and any L1(H)-valued m×m matrix r (m)=
(rmn)m, n=1, ..m,

r (m) \ 0S (Jgrmn)m, n=1,..., m \ 0.

The m×m matrix in the right hand side is the matrix of matrix elements
Jgrmn. A similar definition holds for operators on a Cg-algebra A. (41)

Complete positivity and positivity are equivalent only if A is com-
mutative. (42)

In this paper, the observables A of the system are assumed to be ele-
ments of the von Neumann algebra B(H) of bounded operators on H.
This case is simpler and has been mostly studied in the literature. Note,
however, that the Cg-algebra A describing electrons in solids at the ther-
modynamic limit is different from B(H). (43) For such systems, one has to
work with the Banach space L1(A, T) and with its dual, the von Neumann
algebra L.(A, T), where T is the trace per unit volume on A. (43) Then
the Hilbert space H has to be replaced by the Hilbert space L2(A, T) of
the G.N.S. representation of T.

As is well-known, (44) B(H) is the dual of L1(H) under the duality:

A: r ¥ L1(H)W tr(A r). (26)
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The evolution of observables A(t) in the Heisenberg picture is given by the
dual operators of the Fg(t)’s, F(t): B(H)QB(H) (in fact, the statistical
averages must coincide in the two pictures, which implies tr(A(t) r(0))=
tr(A(0) r(t))). The family F={F(t); t \ 0} of the dual operators is a
semigroup on B(H). Following the definition of refs. 1 and 45, a Quantum
Dynamical Semigroup (QDS) on B(H) is an ultraweakly continuous
semigroup of CP operators on B(H) preserving the identity, i.e, it is a
semigroup F={F(t); t \ 0} on B(H) satisfying, for any t \ 0 and
A ¥B(H):

(QDS1) F(t): B(H)QB(H) is ultraweakly continuous (normal);

(QDS2) F(t) AQ A ultraweakly as tQ 0;

(QDS3) F(t) is CP;

(QDS4) F(t) 1=1 for any t \ 0.

Note that the ultraweak topology is sometimes called ‘s-weak topology’ in
the literature. (QDS1) holds automatically if F(t) is the dual of an operator
on L1(H) for the duality (26) (the ultraweak topology on B(H) coincide
with the f-weak topology for this duality (44)). The two first conditions imply
the existence at t=0 of a generator L of the semigroup, defined on an
ultraweakly-dense domain D(L) in B(H). L A is, by definition, the deriv-
ative dF(t) A/dt (see p. 537), which exists in the ultraweak topology for
any A ¥D(L). (44) The last condition (QDS4) is equivalent to the require-
ment that Fg(t) be trace-preserving. The general form of the (bounded)
generators L of norm continuous QDS has been found by Lindblad; (1) the
case of unbounded generators (non norm continuous QDS) has been
treated by Davies. (46) The result of these authors is that Lg=−LH+Cg is
given by (1). In the particular case of no coupling between the system and
the bath,L=LH generates an ultraweakly continuous group {e tLH; t ¥ R} of
f-automorphisms of B(H) (given by e tLHA=e itHAe −itH, A ¥B(H)). This
is not true if the coupling with the bath is turned on. In this sense, the
notion of QDS generalizes to open quantum systems the notion of one-
parameter group of f-automorphism, describing the dynamics of closed
systems.

4.2. Random Propagators and Quantum Dynamical Semigroups

It is shown in this subsection that the average evolution of observables
of a system with quantum trajectories tW |Y(t)Pt=Ut(t, t0) |kP, where
{U(t, t0); t \ t0 \ 0} is a random propagator, defines a quantum dynamical
semigroup.
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Let U be a RP, t \ t0 \ 0 and A ¥B(H). Define the hermitian form:

hA, t− t0(j, k)=(U(t, t0) 1 é |jP, 1 é AU(t, t0) 1 é |kP)K, |jP, |kP ¥H.

The right hand side depends on t, t0 only through their difference because
of axiom (RP4) and of the stationarity of P under T(s). By axiom (RP6),
|hA, t(j, k)| [ ||A|| ||j|| ||k||. The Riesz lemma shows that there exists a
unique bounded operator F(t): B(H)QB(H) such that, for any
|jP, |kP ¥H, A ¥B(H) and y \ 0,

Oj| F(t) A |kP=(U(t+y, y) 1 é |jP , 1 é AU(t+y, y) 1 é |kP)K

=E OU(t+y, y) j| A |U(t+y, y) kP. (27)

Proposition 3. Let U be a random propagator. Then the family
F={F(t); t \ 0} of operators on B(H) defined by (27) is a quantum
dynamical semigroup on B(H). For any t \ 0, F(t) is the dual under the
duality (26) of the CP operator Fg(t) on L1(H), which acts on T=
;.

n=0 tn |knPOjn | ¥ L1(H) as follows:

Fg(t) T=C
.

n=0
tn E |U(t) knPOU(t) jn |. (28)

Proof. Let A ¥B(H)+ and r=;n rn |knPOkn | ¥ L1(H)+, where
{|knP; n ¥N} is an orthonormal basis of H and rn \ 0, ;n rn <.. Since
F(t) A is bounded, one has (F(t) A) r ¥ L1(H). One obtains from the
cyclicity of the trace and the monotone convergence theorem for sequences:

tr ((F(t) A) r)=C
.

n=0
rnE ||A

1
2 U(t) |knP||2

=C
.

n=0
rn tr(A

1
2 E |U(t) knPOU(t) kn | A

1
2)

=tr(AFg(t) r).

As any bounded (trace-class) operator can be expressed as a sum of four
positive bounded (trace-class) operators, it follows that Fg(t): L1(H)Q
L1(H) and that F(t) is the dual operator of Fg(t). Hence the operators F(t)
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are ultraweakly continuous. It is straightforward to check on (27) that they
are CP. By axiom (RP6), Ok| F(t) 1 |kP=||k||2 for any |kP ¥H. It follows
from the polarization identity that F(t) 1=1. By (RP3),

Oj|F(t+y) A |kP= lim
L ‘ L.

(U(t+y, y)(1éPL)U(y) 1é |jP, (1éA)U(t+y, y)

×(1éPL)U(y) 1é |kP)K

= lim
L ‘ L.

Oj|F(y)(PL(F(t) A) PL) |kP=Oj|F(y)F(t) A |kP.

The second line is obtained by using (RP5) and the ultraweak continuity of
F(t). Hence F is a semigroup. It is clear from axioms (RP2) and (RP7) that
F(t) AQ A weakly as tQ 0. But F(t) A is uniformly bounded with respect
to t. By using the equivalence (44) of the ultraweak and weak topologies on
balls of B(H), this proves (QDS2). L

Remark 5. Let U is a family of operators on K satisfying (17) and
all axioms of RP but with axiom (RP6) replaced by the condition (RP6’) of
Proposition 1. Then, by the same arguments as above, the operators F(t) in
(27) satisfy the properties (QDS1–QDS3).

From a physical point of view, the QDS F gives the average dynamics
of the system, as defined as follows. The stochastic density matrix at time
t \ 0 is given in the Schrödinger picture in terms of the initial density
matrix r(0) ¥ L1(H)+ by the formal expression:

rt(t)=Ut(t) r(0) Ut(t)g.

The average dynamics is then given in the Schrödinger picture by the
average density matrices:

E rt(t)=Fg(t) r(0) ¥ L1(H)+.

In the Heisenberg picture, it is given by the average observables:

E At(t)=F(t) A(0) ¥B(H).

These relations provide the link between the RW approach and the stan-
dard approach by means of statistical ensembles of systems (see e.g. refs. 6
and 9). For example, let the system be initially in a pure state, i.e. r(0) is a
projector Pk on a normalized wavefunction |kP ¥H. Then rt(t)=P|YPt (t),
with |Y(t)Pt=Ut(t) |kP. For any fixed outcome, the system remains in a
pure state at any time. However, the average state E P|YPt (t) at time t > 0 is
not a pure state.
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4.3. Generators of the Average Evolution

It is shown in this subsection that if K is chosen according to (3), the
operators U(t, t0) of Theorem 1 define a RP. The QDS associated to U is
determined explicitly by calculating its generator.

Let L ¥ L and UL(t) be the random evolution operators defined by
(20). By the same arguments as above (Section 4.2),

Oj| FL(t) A |kP=(UL(t) 1 é |jP , 1 é AUL(t) 1 é |kP)K, |kP, |jP ¥H

(29)

definesauniqueCPboundedoperatorFL(t): A ¥B(H)W E UL(t)g AUL(t) ¥
B(H). Note that even if UL(t) does not satisfy axiom (RP6), the hermitian
form in (29) is bounded thanks to (22):

|Oj|FL(t) A |kP| [ Ew2NL(t)
L e2t ||K|| ||k|| ||j|| ||A||=e tCL(w

2
L−1)+2t ||K|| ||k|| ||j|| ||A||.

(30)

The main result of this section is the following:

Theorem 2. Let the assumptions B and D be satisfied. Assume that:

sup
i ¥ L.

C
j ¥ L.

CiQ j <., sup
i ¥ L.

C
j ¥ L.

CjQ i <.. (31)

Then:

(1) for any t \ 0 and A ¥B(H), (FL(t) A)L ¥ L converges ultrastrongly
as L ‘ L. to a bounded operator F(t) A. Moreover, the infinite series in (3)
converges ultrastrongly as L ‘ L. and, if assumption A holds, its sum K
satisfies assumption C with r3=min{r1/2, r2}.

(2) If K is given by (3) (respectively, by (3) up to a self-adjoint
bounded operator HŒ), then F={F(t); t \ 0} is a QDS on B(H) of
generator L=LH+C (resp. L=LH+C+LHŒ), where C is the Lindblad
bounded generator defined by the ultrastrongly convergent sums:

CA= C
i, j ¥ L.

(Lg
iQ jALiQ j−

1
2 {L

g
iQ jLiQ j, A}), A ¥B(H). (32)

The Lindblad operators LiQ j are given by:

LiQ j=`CiQ j (WiQ j−1). (33)
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(3) If K is given by (3) up to a self-adjoint operator and assump-
tions A and C hold, the operators U(t, t0) in theorem 1 define a random
propagator U. Moreover, F is the QDS associated with U, i.e. for any
|kP, |jP ¥H, A ¥B(H) and t \ 0,

Oj| F(t) A |kP — lim
L ‘ L.

EOUL(t) j| A |UL(t) kP=E OU(t) j| A |U(t) kP.
(34)

The brackets denote the anticommutator: {A, B}=AB+BA. The
property (3) shows that one can invert the mean and the limit L ‘ L..
Formula (32) is the expression of the generators of QDS found by
Lindblad. (1) The proof of Theorem 2 is based upon the explicit calculation
of the generators of the semigroups FL for L ¥ L. We perform this calcula-
tion in the remaining of this section. The proof of Theorem 2 will be
completed in Section 7.

Proposition 4. Let assumption D hold and L ¥ L. Denote K1 and
K2 the self-adjoint and anti self-adjoint parts of K:

K1=
1
2
(K+Kg), K2=

1
2i

(K−Kg).

Then the operators FL(t) define an ultraweakly continuous semigroup FL
on B(H) of generator L=LH+CL, where the bounded operator CL on
B(H) is given by:

CL A=i[K1, A]+{K2, A}+ C
i, j ¥ L
CiQ j(W

g
iQ j AWiQ j−A). (35)

Corollary 2. Let assumption D hold. The following conditions are
equivalent:

(1) {UL(t); t \ 0} is a random propagator;
(2) {FL(t); t \ 0} is a quantum dynamical semigroup;
(3) K is given, up to a self-adjoint operator, by KL=

1
2i ;i, j ¥ L CiQ j(W

g
iQ j+1)(WiQ j−1).

If one of these conditions is satisfied, then the bounded part CL of the
generator of FL is given, up to a Liouvillian LH1

=i[H1, .] with H1 a self-
adjoint bounded operator, by:

CL A= C
i, j ¥ L

(Lg
iQ jALiQ j−

1
2 {L

g
iQ jLiQ j, A}), (36)

where LiQ j are given by (33).
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Proof of the proposition. We first prove that the evolution opera-
tors UL(t) satisfy the axiom (RP7) of Definition 1. It has been shown in
Section 3.3 that UL(t) satisfy also axioms (RP1–RP5); by the remark 5
above and (30), it will then follow that FL is an ultraweakly continuous
semigroup.

Let |kP ¥H, t \ 0 and 0 [ y [ 1. One has P(NL([t, t+y])=0)
=e − yCL. It follows from (22), the Cauchy–Schwartz inequality and axiom
(RP4) that ||(UL(t+y)−UL(t)) 1 é |kP||2K is bounded by:

F
NtL([t, t+y]) \ 1

dP(t) ||(UtL(t+y)−UtL(y)) |kP||
2

+F dP(t) ||(U0(y)−1) UtL(t) |kP||
2

[ 4(1−e − yCL)
1
2 (Ew4NL(t+1)

L e4(t+1) ||K||)
1
2 ||k||2

+E ||(U0(y)−1) UtL(t) |kP||
2.

As yW U0(y)=e −iy(H+K) is strongly continuous, one concludes from the
dominated convergence theorem that (UL(t+y)−UL(t)) 1 é |kPQ 0 as
yQ 0+. This shows that UL(t) satisfies (RP7).

Hence FL is an ultraweakly continuous semigroup. Let LH+CL be its
generator and LH+C0 the corresponding generator for L=”:

F0(t) A=U0(t)g A U0(t)=e t(LH+C0) A.

Forany |kP ¥D(H), i dU0(t) |kP/dt=(H+K) |kP (seeProposition5below).
If A ¥D(LH), then

t −1(F0(t) A−A)Q i(H+Kg) A− iA(H+K)

weakly on D(H) as tQ 0. Thus:

C0 A=i[K1, A]+{K2, A}, A ¥B(H). (37)

Let 0 [ t [. and E > 2 ||K||. As ||F0(t)|| [ e2t ||K||, Proposition 3.1.6. of
ref. 44 shows that:

(e −tE F0(t)−1)(E−LH−C0) −1 A=−F
t

0
ds e −sE F0(s) A, A ¥B(H).

(38)
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It follows from (20) that for any p ¥N,

F
tp+1L

tpL
dt e −tE UL(t)g AUL(t)=e −t

p
LEF0(s

1
L)Wi1LQ j1L

· · ·

F0(s
p
L)WipLQ jpL

(1−e −s
p+1
L EF0(s

p+1
L ))×(E−LH−C0) −1 A, (39)

with WiQ jA=Wg
iQ jAWiQ j for any A ¥B(H). Note that, by hypothesis,

WiQ j and C0 leave D(LH) invariant. All the operators in the right hand
side of (39) are stochastically independents. sqL is distributed according to
an exponential law with parameter CL, so that, thanks to (38),

E e −s
q
LE F0(s

q
L) A=CL(E+CL−LH−C0) −1 A, A ¥B(H), q=1,..., p.

The formula (8) yields:

WL A=EWiqLQ jqL
A=

1
CL

C
i, j ¥ L
CiQ jW

g
iQ jAWiQ j, A ¥B(H), q=1,..., p.

The mean value of the right hand side of (39) is:

F (p)
L (E) A=(CL(E+CL−LH−C0) −1 WL)p (E+CL−LH−C0) −1 A.

By (22) and (38), the norm of (E+CL−LH−C0) −1 WL is bounded by
w2
L/(E+CL−2 ||K||). Therefore the series ;.

p=0 F
(p)
L (E) converges in norm if

E > EL=2 ||K||+(w2
L−1) CL. Let A be positive and bounded and |kP ¥H.

The Laplace transform of Ok| FL(t) A |kP is for E > EL:

F
.

0
dt e −tE Ok| FL(t) A |kP=Ok| (E−LH−CL) −1 A |kP

=E C
.

p=0
F
tp+1L

tpL
dt e −tE Ok| UL(t)g AUL(t) |kP

=C
.

p=0
Ok| F (p)

L (E) A |kP

=Ok| (E−LH−C0−CL(WL−1)) −1 A |kP. (40)

The identity (38) has been used in the first line, together with Fubini’s
theorem and the monotone convergence theorem in the second. By the
polarization identity and the linearity in A in (40), CL=C0+CL(WL−1). L

Proof of the corollary. The axiom (RP6) of RP is equivalent, by the
polarization identity, to the axiom (QDS4) of QDS (see the proof of
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Proposition 3). Since it has been shown that UL(t) satisfy all axioms of RP
but (RP6) and that FL(t) satisfy all axioms of QDS but (QDS4), this
proves that (1)Z (2). Now (QDS4) is equivalent to CL 1=0. By (35), this
shows that (2)Z (3). L

It follows from Proposition 4 that FL are bounded perturbations of
the group of f-automorphisms generated by the derivation LH. By apply-
ing the Theorem 3.1.33. of ref. 44, one obtains:

Corollary 3. The operators FL(t) A can be expressed by means of
the following norm convergent Dyson’s series:

FL(t) A=e tLHA+C
.

q=1
F
t

0
dyq F

yq

0
dyq−1 · · ·F

y2

0
dy1 e (t− yq)LH CL e (yq− yq−1)LH · · ·

CL e (y1)LH A. (41)

Let us come back to the Anderson model for electrons in disordered
solids of Section 2.2. As follows from (11) and (33), the Lindblad operators
are LiQ j=`CiQ j | jPOi|, i, j ¥ L.. The corresponding Lindblad equation
for the density matrix reads:

dr
dt

+LHr=Cgr= C
i, j ¥ L., i ] j

CiQ j
1Oi| r |iP Pj−

1
2
{Pi, r}2 , (42)

where Pi=|iPOi| is the projector on |iP. Equation (42) is the optical master
equation. (47) It describes the mean evolution of the system due to phonon
absorption/emission processes; it does not take into account the elastic
electron-phonon scattering. Note that the action of the collision operator
on the diagonal part of the density matrix r coincide with the action of the
collision operator of the Boltzmann equation (10).

Remark 6. The classical jumps model of Section 2.2 does not define
a QDS. Actually, such a model does not describe correctly the evolution of
quantum observables A which do not commute with H=V.

5. STOCHASTIC HAMILTONIANS

5.1. The Stochastic Schrödinger Equation

Let us assume that the jump operators can be expressed as exponen-
tials, i.e. that there exists some bounded operators ViQ j such that:

WiQ j=e − iViQ j, i, j ¥ L.. (43)
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This is the case for instance in the model for electrons in strongly
disordered solids of Section 2.2: the jump operators (11) are of the form
(43) with ViQ j=i | jPOi|. It is shown in this section that the stochastic
evolution of Section 2 can be found by solving formally the stochastic
Schrödinger equation:

i
d |kP
dt

=1H+K+ C
i, j ¥ L.

ViQ j C
.

n=−.
d(t− tniQ j)2 |k(t)P. (44)

The last term in the time-dependent stochastic Hamiltonian is a random
kicked Hamiltonian (noise term). The second term, which is time indepen-
dent and non random, can be interpreted as a ‘damping term’, by analogy
with the Langevin equation describing Brownian motion.

5.2. Solution of the Schrödinger Equation

Let us restrict as before L. to a finite box L … L. and compute the
solution of the corresponding stochastic Schrödinger equation,

i
d |kLP
dt

=1H+K+ C
.

p=−., p ] 0
VipLQ jpL

d(t− tpL)2 |kL(t)P. (45)

As usual (see e.g. ref. 48), this solution is found in two steps: (1) replace the
Dirac distribution d by a smooth function ge: RQ R+ of compact support
supp ge … [− e, e] and integral unity:

F
.

−.
dt ge(t)=1, e > 0; (46)

(2) find the limit as eQ 0+ of the corresponding solution |kL, e(t)P.
Let us substitute ge to d in (45). The time-dependent Hamiltonian must

be replaced by the operator:

VL, e(t)= C
.

p=−., p ] 0
VipLQ jpL

ge(t− tpL).

The resulting Schrödinger equation is:

i
d |kL, e(t)P

dt
=(H+K+VL, e(t)) |kL, e(t)P (47)
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The purpose of the following statements is to show that the limit as eQ 0+
of its solution |kL, e(t)P such that |kL, e(t0)P=|kP ¥D(H) is given by:

lim
eQ 0+

|kL, e(t)P=UL(t, t0) |kP, (48)

where UL(t, t0) is the random evolution operator (20). It will follows from
Theorem 1 that the (formal) solution of the Schrödinger equation (44) with
the same initial condition, obtained by letting the size of the box L tend to
infinity, is:

|k(t)Pt= lim
L ‘ L.

lim
eQ 0+

|kL, e(t)Pt=Ut(t, t0) |kP, (49)

which exists for a.e. t. Note the importance of the order of the limits: we
have first taken eQ 0+ and then L ‘ L..

The next proposition is a well-known result on time-dependent
Schrödinger equation. Its proof can be found in standard textbooks (see
e.g. ref. 39, problems of Section X.12).

Proposition 5. Let H be a self-adjoint operator with dense
domain D(H). Let D(LH) be the subset of B(H) defined by (14).
Let t ¥ RW V(t) ¥D(LH) be a norm-continuous application such that
t ¥ RWLHV(t) is also norm-continuous. Then, for any |kP ¥D(H) and
t0 ¥ R, the time-dependent Schrödinger equation:

i
d |k(t)P

dt
=(H+V(t)) |k(t)P

with the initial condition |k(t0)P=|kP has a unique solution |k(t)P=
U(t, t0) |kP. The operators U(t, t0) belong to D(LH) and are given by the
norm-convergent Dyson series:

U(t, t0)=C
.

q=0
(− i)q F

t

t0
dyq · · · F

y2

t0
dy1 e − iH(t− yq) V(yq) · · ·

e − iH(y2− y1) V(y1) e − iH(y1− t0). (50)

The norm-convergence of this series is uniform with respect to (t, t0) on
compacts of R2.

The last statement implies in particular that (t, t0) ¥ R2 W U(t, t0) is
strongly continuous (by hypothesis on V(t) and strong continuity of
tW e − iHt, all terms in the series are strongly continuous).
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Corollary 4. Let assumption D hold. Let L ¥ L, e > 0, t0 \ 0 and
|kP ¥D(H). Then the stochastic Schrödinger equation (47) with the initial
condition |kL, e(t0)Pt=|kP has a unique solution |kL, e(t)Pt=UtL, e(t, t0) |kP
for all t in a (k, e)-independent subset of X of probability 1.

Proof. The functions he, i, j(y)=;n ge(y−tniQ j) are a.s. continuous.
Actually, given t > 0, one can find a set Xt, i, j … X of probability one such
that, for any t ¥ Xt, i, j, −t [ y [ t and 0 < e [ 1, the number of terms
different from zero in the series defining he, i, j(t) is less than
NiQ j([−t−1, t+1]), which is a.s. finite. Hence K+VL, E(t) ¥ D(LH) a.s.
for any t \ 0 and the applications tW VL, E(t) and tWLHVL, E(t) are a.s.
norm-continuous. L

The next result shows that the evolutions operators UL, e(t, t0) converge
strongly as eQ 0+ and that their limit is independent of the choice of the
functions ge.

Proposition 6. Let assumption D hold. Let L ¥ L and {ge; e > 0} be
a family of smooth functions RQ R+ of supports in [− e, e] satisfying
(46). Then UL, e(t, t0) converges strongly a.s. for any t, t0 \ 0. If t0 [ t, its
strong limit is a.s. given by (20).

This proposition and Theorem 1 prove the result announced above:

Corollary 5. Let assumptions A to D hold and |kP ¥D(H). Then
the solution of the stochastic Schrödinger equation (44) with the initial
condition |k(t)Pt=|kP is given by (49), where Ut(t, t0) is the random
evolution operator defined in Theorem 1.

Proof. The operators UL, e(t, t0) are uniformly bounded in e on
]0, 1]. In fact, since supp ge is a subset of [−1, 1] for such e’s, it follows
from (46) that the q-th term of the Dyson series (50) is bounded by:

1
q!
1 ||K||+ C

i, j ¥ L
||ViQ j || NiQ j([t0−1, t+1])2

q

.

This also shows that the Dyson expansion (50) for UL, e(t, t0) converges in
norm uniformly with respect to e on ]0, 1]. Moreover, the uniqueness of
the solution |kL, e(t)P implies:

UL, e(t, y) UL, e(y, t0)=UL, e(t, t0), t0 [ y [ t.

It is thus sufficient to show that UL, e(t, y) converges strongly for any
t, y ¥ ] tp−1L , tp+1L [, since one may then use this relation to extend this result
for any t, t0 ¥ R.
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For t, y ¥ ] tpL, t
p+1
L [, the convergence is evident as UL(t, y)=U0(t, y)

for any e smaller than d({y, t}, {tpL, t
p+1
L })/2. Assume tp−1L < y [ tpL [

t < tp+1L . Let e > 0 be such that e [ (tp+1L −t)/2 and e [ (y−tp−1L )/2. Using
(50), one gets:

UL, e(t, y)=C
.

q=0

(− i)q

q!
F
R
q
D
q

r=1

1ge(yr−tpL) dyr 2C
s

q(t \ ys(q) \ · · · \ ys(1) \ y)

×U0(t− ys(q)) VipLQ jpL
· · ·U0(ys(2)− ys(1)) VipLQ jpL

U0(ys(1)− y). (51)

The sum inside the integral runs over all permutations s of {1, 2,..., q}. It
is a strongly continuous operator-valued function of (y1,...yq) with compact
support. Therefore each term in the sum over q converges strongly to:

(− i)q

q!
U0(t− tpL) (VipLQ jpL

)q U0(t
p
L− y).

as eQ 0+. Since the series (51) converges uniformly with respect to e,
UL, e(t, y)Q UL(t, y) a.s. as eQ 0+. Similar arguments show that UL, e(y, t)
converge strongly a.s.. L

Remark 7. For the time reversed stochastic evolution, the strong
limit of UL, e(t, t0) is a.s. given, if t

p−1
L [ t < tpL [ t0, by:

UL(t, t0)=U0(t− tpL) W
−1
ipLQ jpL

U0(t
p
L−tp+1L ) · · ·W −1

i−1L Q j−1L
U0(t

−1
L −t0).

Remark 8. Equation (45) may be rewritten as an Ito stochastic dif-
ferential equation as follows:

i d |kLP=1 (H+K) dt+i C
i, j ¥ L

(WiQ j−1) dNiQ j(t)2 |kL(t)P. (52)

This equation has the same solutions, given by the evolution operators
(20), as (44). This can be seen by computing the values of the discontinui-
ties of |k̃L(t)P=U0(t0, t) UL(t, t0) |kL(t0)P at the jump times tpL , and by
noting that |k̃L(t)P is constant between jumps. Note that, although it might
be tempting to replace dNiQ j(t) by ;n d(t− tniQ j) dt, the operator multiply-
ing the stochastic differential in (52) is i(WiQ j−1), whereas ViQ j multiplies
the Dirac distributions in (44). A similar stochastic differential equation
has been introduced by Belavkin, (12) but K and the jump operators WiQ j

are different in this reference than the one considered here (see Section 6).
Onemay prove directly Proposition 4 on the expression of the generator of the
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average dynamics by using Ito stochastic calculus and the stochastic
Schrödinger equation (52). The proof given above has the advantage that it
shows that Laplace transforms of observables can be computed directly,
without having to solve a differential equation.

We end this section by stating a result on the strong convergence of
the double sum in (44) in the sense of operator-valued distributions.

Proposition 7. Let (31) be satisfied and assume that for any
i, j, k, l ¥ L.,

|Ol| ViQ j |kP| [ (f −il+f −jl)(f
−

ik+f −jk), (53)

where the matrix elements f −ij=f −ji > 0 are such that there is a > 0 and
g > 0,

f −ij [ a |i− j| −2d−g, i, j ¥ L..

Let g be a real function of class C. with compact support and set:

OVL, gP= C
i, j ¥ L

ViQ j C
.

n=−.
g(tniQ j), L ¥ L.

Then there is a non-random dense domain D …H such that (OVL, gP)L ¥ L

converges strongly on D as L ‘ L. with probability one. Denote by OV, gP
its limit. There are a random constant c and a non-random unbounded
positive self-adjoint operator A of domain D such that the inequality:

||OV, gP |kP|| [ c ||A |kP||, |kP ¥H (54)

holds with probability one.

This proposition is proven in the appendix, where it is also shown that
OV, gP can be unbounded with probability one.

Remark 9. If (53) holds with supi ¥ L. ;j ¥ L. f −ije
r2|i− j| <., then

assumption B is satisfied. In fact, for any n ¥Ng,

|Ol| VniQ j |kP| [ (f −il+f −jl)(f
−

ik+f −jk) C
l1,...ln−1 ¥ L.

(f −il1+f −jl1)
2 · · · (f −iln−1+f −jln−1)

2

[ c2n−2(f −il+f −jl)(f
−

ik+f −jk)

with c=2 supi ¥ L. ;l ¥ L. f −il. Expanding W ±1
iQ j=e + iViQ j as a power series

gives:

|Ol| (W ±1
iQ j−1) |kP| [

exp(c2)−1
c2

(f −il+f −jl)(f
−

ik+f −jk).
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6. COMPARISON WITH OTHER STOCHASTIC SCHEMES

Other stochastic dynamical schemes with Poisson processes have been
introduced by Ghirardi, Rimini and Weber, (8) Dalibard, Castin and
Mølmer, (6) Carmichael, (7) and Barchielli and Belavkin. (11, 12) Different
schemes using Wiener processes have been studied by Gisin and
Percival, (9) Ghirardi, Pearle and Rimini, (10) van Kampen (20) and by
other authors. (10, 16, 21–24) We outline in this section the main similarities and
differences of these models with the model presented above. The reader
can find more information and other relevant references in the reviews. (7, 28, 49)

6.1. Quantum Jumps Schemes

To our knowledge, the first quantum jumps scheme is due to Ghirardi
et al., (8) who introduced the following model in connection with the
problem of the linear superpositions of macroscopically distinguishable
states (Schrödinger cat states). The authors consider some jump operators

Lx, n=(`p a) −
1
2 exp 1 −(x−Xn)2

2a2
2

which implement ‘spontaneous collapses’ in the position space around
some point x ¥ R3. Xn is the position operator of the n-th particle of a
composite system of N particles. The collapse (x, n) localizes the n-th par-
ticle around x with an accuracy a > 0. The operators Lx, n are self-adjoint
and satisfy:

F
R
d
dx L2

x, n=1, n=1,..., N. (55)

In the wavefunction formulation of the model, (50) the collapses (jumps)
modify discontinuously the wavefunction of the system according to the
non-linear transformation:

collapse (x, n): |kPQ ||Lx, n |kP|| −1 Lx, n |kP.

The probability that a collapse (x, n) (resp. that any collapse) occurs
between times t and t+dt is equal to dpn(x)=l ||Lx, n |k(t)P||2 dt (resp. to
dp=;n > dx dpn(x)=lN ||k(t)||2 dt), where l is a characteristic frequency.
Between jumps, the composite system evolves according to Schrödinger
equation (with no damping operator; this fact is related to (55)). As shown
in ref. 8, for macroscopic systems (N± 1), the stochastic collapses kill
very rapidly the coherences between states localized a distance greater
than a. Provided one chooses l small enough, they have little effect on the
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dynamics of microscopic systems (N 4 1) at times accessible in a labora-
tory experiment.

Dalibard et al. (6) and Carmichael (7) have studied a similar but different
model in order to describe photon-atom interactions in quantum optics.
The original motivation was to reproduce experimental data on the
fluorescence of single atoms. (28) Quantum jumps occur as a result of a con-
tinuous measurement of photon emission from the atom. The disconti-
nuous change of the wavefunction occurring at a jump is given, as in the
collapse model above, by a non-linear transformation. In the notations of
Section 2.1:

jump (i, j): |kPQ ||(WiQ j−1) |kP|| −1 (WiQ j−1) |kP. (56)

The operators WiQ j−1 are arbitrary (they do not satisfy a relation similar
to (55)), as in the case considered in this paper. A jump (i, j) occurs if a
photon of energy equal to the Bohr frequency wij=Oi| V |iP−Oj| V |jP is
detected. Between jumps, the atom evolves in the following way. Successive
measurements on the fluorescence of the atom are performed at short time
intervals dt, with the result of no photon detected. These measurements
increase our knowledge on the state of the system; it can be shown that the
wavefunction evolves between two measurements according to Schrödinger
equation but with a non self-adjoint Hamiltonian H+K0. Perturbation
theory gives: (6)

K0=
1
2i

C
i, j
CiQ j(WiQ j−1)g (WiQ j−1) (57)

(note the difference with the damping operator K defined in (3)). Imme-
diately after a zero-photon measurement, the wavefunction is normalized,
|kPQ ||k|| −1 |kP. If, on the contrary, a photon is detected, the wavefunc-
tion is transformed as in (56). The probability of detection of a photon of
frequency wij is dpiQ j=CiQ j ||(WiQ j−1) |k(t)P||2 dt. It depends upon the
wavefunction |k(t)P before the jump, and thus upon t. As a consequence,
the time delays siQ j between consecutive jumps (i, j) are not given by
simple exponential laws. The quantum jumps scheme of Dalibard et al. is
therefore more involved than the one given by a set of independent Poisson
processes (this conclusion also holds for the collapse model of ref. 8).
Despite this mathematical complexity, its dynamics is very simple to
implement numerically. (6) On time scales greater than dt, the stochastic
dynamics is norm-preserving. The same model has been derived by a
completely different and more abstract method using quantum stochastic
calculus by Barchielli and Belavkin. (11)

The main difference between the models of refs. 6–8, and 11 with the
model presented in Section 2 is that the stochastic dynamics is linear and
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not norm-preserving in the latter, and vice versa in the formers. A linear
non norm-preserving model based on Poisson processes has also been dis-
cussed by Belavkin. (12) The quantum jumps in this work are given by (56)
excepted that no normalization of the wavefunction is made, and the
damping operator is different from both damping operators K and K0

defined in (3) and (57).

6.2. Quantum Diffusion schemes

As in the schemes of refs. 6–8, and 11, the stochastic scheme inves-
tigated by Gisin et al., (9) Ghirardi et al. (10) and Barchielli et al. (11) has a
norm-preserving and non linear stochastic quantum evolution. However,
this evolution is given by a stochastic Schrödinger equation with Wiener
processes (quantum diffusion). Another model, based on Wiener processes
but with linear stochastic dynamics, has been introduced by Gorini and
Kossakowski (16) and studied in more details in refs. 10 and 20. Its wave-
function satisfies the Ito stochastic Schrödinger equation:

i d |kP=1 (H+K0) dt+i C
i, j
`CiQ j (WiQ j−1) dtiQ j(t)2 |k(t)P, (58)

where K0 is given by (57) and (tiQ j(t))t ¥ R are independent complex Wiener
processes. The Ito differentials dtiQ j satisfy:

dtiQ j dt̄kQ m=di, kdj, m dt, dtiQ j dtkQ m=0.

The link between this linear non norm-preserving model and the norm-
preserving non linear one has been emphasized in ref. 10.

As shown in refs. 6, 7, 10, 9, 20, provided that the appropriate
damping operator K is added to the Hamiltonian H, all the above models
lead to the same trace-preserving average dynamics, given by the Lindblad
equation (1); it has been shown in Section 4 that the same holds true in our
model. More general stochastic dynamical models, which lead to non-
Markovian master equations and use correlated noise, have been intro-
duced recently by several authors. (21–24) In refs. 21 and 22, two nice deriva-
tions of these models by mean of a path integral and a coherent states
method have been proposed.

6.3. Comparison with the Model of Section 2.1.

The main advantage of the RW model presented in this work
compared with the non linear quantum jumps scheme of e.g. Dalibard et
al. is its simplicity. Because of the use of Poisson processes and of the
linearity of the dynamics, the solution of the stochastic Schrödinger equa-
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tion is known exactly: it is given by formula (4). The mathematical analysis
is also more easy, as the operator theory framework can be used to study
the stochastic evolution in the Hilbert space. From the point of view of the
average dynamics (i.e., for statistical ensembles of systems), our model is
equivalent to the model of Dalibard et al. and to the other models dis-
cussed in the preceding subsections. Actually, as seen in Section 4, the
density matrix r(t)=E |k(t)POk(t)| is given by the same quantum dynam-
ical semigroup with Lindblad generator as in these models.

For general (non unitary) jump operators WiQ j, the norm of the
wavefunction for a fixed outcome is not constant (and not continuous) in
time (although, as said before, the square norm is conserved on average).
Indeed, if one insists in describing an open system by a wavefunction, its
norm may not be necessarily conserved by the dynamics, since, unlike in a
closed system, the dynamics is not unitary. This is related to the fact that
the interaction with the environment may provide us with some informa-
tion on the system.

From the numerical side, the stochastic dynamics in our model could
be of interest if the exponentials e −is(H+K) were known on a broad interval
of times s. This happens, for example, if H+K can be diagonalized analy-
tically. Then, the computation of the wavefunction at time t requires a
multiplication of 2p matrices, where p is the number of jumps between
t=0 and t (formula (4)), whereas the non linear quantum jumps and the
Wiener schemes involve a time integration between 0 and t. However, the
range of application of the model is clearly limited to systems for which the
RW for a typical trajectory has a norm that do not decrease or grow too
rapidly on the considered time interval.

7. PROOFS

This section is devoted to the proofs of Theorems 1 and 2. It is
organized as follows. We introduce few definitions and a deterministic
estimate in the first subsection. A probabilistic estimate is proved in the
second subsection. The proof of Theorem 1 on the stochastic evolution is
then obtained in the third subsection. The last subsection present the proof
of Theorem 2 on the average dynamics; it is independent of the two pre-
ceding subsections.

7.1. Notations - Deterministic Estimate

If |kP and A are respectively a vector and an operator on H, we
denote by |k̃P and Ã the vector and operator:

|k̃P= C
i ¥ L.

|Oi | kP| |iP, Ã= C
i, j ¥ L.

|Oi| A |jP| |iPOj|.
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We define the following order relations on the Hilbert space H and on the
space of operators on H:

|jPO |kPZ Oi | jP [ Oi | kP - i ¥ L.

AO BZ Oi| A |jP [ Oi| B |jP - i, j ¥ L..

It is clear that if ÃO B and C̃O D, then 0O4(AC)O BD and, for any
|kP ¥H,

||A |kP|| [ ||B |k̃P||. (59)

For any r \ 0, the f-algebraic norms ||.||r on subspaces of B(H) are
defined by:

||A||r=max 3 sup
i ¥ L.

C
j ¥ L.

|Oi| A |jP| e r |i− j|, sup
i ¥ L.

C
j ¥ L.

|Oj| A |iP| e r |i− j|4 . (60)

Let us set:

F= C
i, j ¥ L.

fij |iPOj|, G= C
i, j ¥ L.

CiQ j(|iP+|jP)(Oi|+Oj|) (61)

With these notations, assumption B reads:

W̃iQ j O 1+dWiQ j, (62)

with:

dWiQ j=F(|iP+|jP)(Oi|+Oj|) F. (63)

The hypothesis on fij in assumption B, assumption A and assumption C
are respectively equivalent to:

||F||r2 <., ||G||r1 <., ||T+K||r3 <.. (64)

The more general assumption (31) is equivalent to ||G||0 <..

Remark 10. Any positive, increasing and ||.||-bounded sequence
(|kmP)m ¥N in H with respect to O (i.e. such that 0O |kmPO

|km+1P -m ¥N and supm ||km || <.) is convergent. For any positive and
increasing sequence of operators (Am)m ¥N with respect to O such that
there is A ¥B(H), Oi| Am | jPQ Oi| A |jP - i, j ¥ L., one has Am Q A
strongly. The first affirmation follows from the estimate:

||km−kn ||2=||km ||2+||kn ||2−2 C
i ¥ L.

Oi |kmPOi |knP [ ||km ||2−||kn ||2, m \ n.
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The sequence (||km ||2)m ¥N being increasing and bounded, it is Cauchy and
thus so is (|kmP)m ¥N. The second affirmation follows from an e/3 argu-
ment.

Let assumption D be satisfied. By applying Proposition 5 with H0 V,
V(t)0 T+K, the Dyson’s expansion:

U0(s)=e − isV+C
.

q=1
(− i)q F

0 [ y1 · · · [ yq [ s
dy1 · · · dyq

e − i(s− yq) V(T+K) · · · e − i(y2− y1) V(T+K) e − iy1V

converges. Since4(e − isV)=1 for any s ¥ R, this implies that Ũ0(s)O e s
4(T+K).

Together with (20) and (62), this yields to the following deterministic esti-
mate.

Lemma 1. Let the assumptions B and D hold. Set S=4(T+K).
Then ŨtL(t)O CtL(t) for any t ¥ X, L ¥ L and t \ 0, where the random
operators CL(t) are given by:

CL(t)=e (t− t
p
L) S(1+dWipLQ jpL

) e s
p
LS · · · (1+dWi1LQ j1L

) e s
1
LS, 0 [ tpL [ t < tp+1L .

(65)

Moreover, CL(t) is an increasing function of L and t for the order relation
O , i.e. for any L, LŒ ¥ L and t, tŒ \ 0, (L … LŒ or t [ tŒ) S CL(t)O CLŒ(tŒ).

7.2. Probabilistic Estimate

For any m ¥Ng, let H é m
be the m-th tensor product of the Hilbert

space H. If A ¥B(H), the bounded operators A é m
and Am on H é m

are
defined by:

A é m
=A é · · · é A, Am=C

m

m=1
1 é · · · é 1 é A é 1 é · · · é 1

(A is the m-th factor in the m-th term of the sum). For r \ 0, an algebraic
f-norm ||.||r on subspaces of B(H é m

) is defined in much the same way as
in (60):

||A (m)||r=max 3 sup
i1, .., im ¥ L.

C
j1,..., jm ¥ L.

|Oi1, ..., im | A (m) | j1, ..., jmP| e r ;
m
m=1 |im−jm|,

(A (m) Y (A (m))g)4. (66)
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Here |i1, i2, ..., imP ¥H é m
denotes the tensor product of the m vectors

|i1P,...|imP. It is clear that ||A é m
||r=||A||mr and ||Am ||r=m ||A||r.

Lemma 2. Let m ¥Na and assumptions A to D hold. Then, for
almost all t with respect to the Lebesgue measure, E CL(t) é m

Q e t(R
(m)+Sm)

strongly as L ‘ L., where R (m) is the strongly convergent sum:

R (m)= C
i, j ¥ L.

CiQ j((1+dWiQ j) é m
−1). (67)

Moreover if 0 [ r [ r2, r [ r3 and r [ r1/m, then supL ¥ L ||E CL(t) é m
||r is

finite.

Proof. Let E > m ||S||0. The Laplace transform of CL(t) é m
is:

C (m)
L (E)= F

.

0
dte −tECL(t) é m

=C
.

p=0
(E−Sm) −1 (1−e s

p+1
L (Sm− E))

×(1+dWipLQ jpL
) é m

e s
p
L(Sm− E) · · · (1+dWi1LQ j1L

) é m
e s

1
L(Sm− E).

A similar calculation than the one performed in the proof of Proposition 4
shows:

E C (m)
L (E)=(CL+E−Sm) −1 C

.

p=0
((CL+R (m)

L )(CL+E−Sm) −1)p (68)

provided that the series converges, with:

R (m)
L =CL(E(1+dWiqLQ jqL

) é m
−1)= C

i, j ¥ L
CiQ j((1+dWiQ j) é m

−1)P 0.
(69)

Let 0 [ r [ r2, r [ r3, r [ r1/m. A simple but somehow lengthly estimate
gives:

> C
i, j ¥ L
CiQ j dW

é m
iQ j
>
r
[ 22m−1 ||F||2mr ||G||mr <., m=1,..., m, L ¥ L.

By expanding the tensor product in (69), it follows that ,a > 0 such that
||R (m)

L ||r [ a -L ¥ L. The matrix elements Oi1,..., im | R
(m)
L | j1,..., jmP converge

when L ‘ L., as non decreasing bounded functions of L. Hence R (m) is
bounded and R (m)

L Q R (m) strongly as L ‘ L. (see remark 10). Let E >
m ||S||r+a. For any L ¥ L, ||(CL+R (m)

L )(CL+E−Sm) −1||r < 1 and the series
in (68) converges for the norm ||.||r. Then:

EC (m)
L (E)=(E−R (m)

L −Sm) −1 Q (E−R (m)−Sm) −1
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strongly. By the monotone convergence and Fubini theorems, the Laplace
transform of the limit of Oi1, ..., im | ECL(t) é m

| j1,..., jmP as L ‘ L. is equal
to:

lim
L ‘ L.

Oi1, ..., im | EC
(m)
L (E) |j1,..., jmP=Oi1,..., im | (E−R (m)−Sm) −1 | j1,..., jmP.

The first statement follows by inverse Laplace transforms. Since ||R (m)||r=
limL ‘ L. ||R

(m)
L ||r [ a and ||Sm ||r=m ||S||r are finite, hence so is ||e t(R

(m)+Sm)||r.
This shows the second statement of the lemma because CL(t) increases
with L. L

Lemma 3. Let assumptions A to D hold. Then, for any g > 0 and
any 0 < r [ r1g/(d+g), r [ r2, r [ r3, there is a random constant c > 0 such
that with probability one,

Oi| CL(t) |jP [ c(min{|i|, | j|})g e −r |i−j|, -i, j ¥ L., -L ¥ L. (70)

Proof. One must show that the set of outcomes X0:

X0=3
c > 0

0
L ¥ L

0
i, j ¥ L.

XL, c, i, j, XL, c, i, j={t ¥ X; Oi| CtL(t) |jP \ ce −r |i− j| |i|g}

has probability zero. Let m ¥Ng be such that d/g < m [ d/g+1. Since
CL(t) is an increasing function of L, XL, c, i, j … XLŒ, cŒ, i, j if L … LŒ or c \ cŒ.
Hence:

P(X0) [ lim
cQ.

lim
L ‘ L.

C
i, j ¥ L.

P(XL, c, i, j). (71)

By Tchebychev’s inequality,

P(XL, c, i, j) [ E Oi| CL(t) |jPm
emr |i−j|

|i|mg cm
.

But mg > d and rm [ r1, thus by lemma 2,

P(X0) [ lim
cQ.

c −m sup
L ¥ L

||ECL(t) é m
||r C

i ¥ Z
d
|i| −mg=0. (72)

The same argument holds by interchanging i and j. L
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7.3. Proof of Theorem 1

Proof of Theorem 1. Let |kP ¥H and t \ 0. One has to show that
the net (UL(.) |kP)L ¥ L is Cauchy with probability one for the sup norm
||k(.)||t=sup0 [ y [ t ||k(y)||. Let L, LŒ ¥ L, L … LŒ and 0 [ y [ t. ULŒ can be
expressed by a formula similar to (20), but with U0 replaced by UL and the
(ipL, j

p
L)’s by the pairs (ipLŒ, L, j

p
LŒ, L) of indices in LŒ with at least one index

outside L. This gives:

ULŒ(y)−UL(y)= C
i, j ¥ LŒ, i or j ¨ L

C
NiQ j(y)

n=1
ULŒ(y, t

n
iQ j+)(WiQ j−1) UL(t

n
iQ j−).

(73)

From this equality, assumption B and lemma 1, it follows:

||(ULŒ(.)−UL(.)) |kP||t [ sup
0 [ y [ t

> C
i, j ¥ LŒ, i or j ¨ L

NiQ j(y) CLŒ(y) dWiQ jCL(y) |k̃P>

[ > C
i, j ¥ LŒ, i or j ¨ L

|ji, j, LŒŒP>

with LŒŒ ‡ LŒ ‡ L and:

|ji, j, LŒŒP=NiQ j(t) CLŒŒ(t) dWiQ j CLŒŒ(t) |k̃PP 0.

By the remark 10 above, (UL(.) |kP)L ¥ L is Cauchy provided that:

sup
L, LŒŒ ¥ L

> C
i, j ¥ L

|ji, j, LŒŒP>
2

<.. (74)

To prove that (74) is true with probability one, it is enough to show that
the mean value of the left hand side exists and is finite. Successive applica-
tions of the monotone convergence theorem and Fatou’s lemma shows that
this mean value is finite if:

C
k ¥ L.

sup
L, LŒŒ ¥ L

E 1 C
i, j ¥ L

Ok | ji, j, LŒŒP2
2

<.. (75)

It remains to prove (75).
By applying twice the Cauchy–Schwartz inequality, it follows that

E(;i, j ¥ L Ok | ji, j, LŒŒP)2 is bounded by:

C
l, lŒ, m, mŒ, h, hŒ ¥ L.

Ol| BL |hPOlŒ| BL |hŒP

(EOk, h, k, hŒ| CLŒŒ(t) é 4
|l, m, lŒ, mŒP2)

1
2 Om | k̃POmŒ | k̃P,
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with:

BL= C
i, j ¥ L

(EN4
iQ j(t))

1
4 dWiQ j.

Now EN4
iQ j(t) is a polynomial of degree 4 in CiQ j and CiQ j [ ||G||r1 e

−r1 |i− j|.
Hence there is a constant c > 0 such that EN4

iQ j(t) [ c e −r1 |i− j| - i, j ¥ L..
This means that for any 0 < r < r1/4, r [ r2:

||BL ||r [ c
1
4 ||F||2r > C

i, j ¥ L.

e −
r1 |i− j|
4 (|iP+|jP)(Oi|+Oj|)>

r
<..

Moreover, it follows from lemma 2 that if 0 [ r [ r1/8 and r [ r2, r [ r3,

E Ok, h, k, hŒ| CLŒŒ(t) é 4
|l, m, lŒ, mŒP2 [ const. e −2r(|k−l|+|h−m|+|k−lŒ|+|hŒ−mŒ|).

By using the bound Ol| BL |hP [ ||BL ||r e −r |l−h|, the following inequality
holds:

sup
L, LŒŒ ¥ L

E 1 C
i, j ¥ L

Ok| Ṽq |ji, j, LŒŒP2
2

[ const. Ok| V |kP2q Ok| D3r |k̃P
2,

where q=0 or 1 and Dr is given by (24) and is clearly bounded. This esti-
mate, with q=0, proves (75), i.e., that (UL(.) |kP)L ¥ L converges for the sup
norm ||.||t with probability one. The same estimate for q=1 proves that if
|kP ¥D(H) and DrD(H) …D(H), (V UL(t) |kP)L ¥ L converges with prob-
ability one (recall that D(V)=D(H)). By the closeness of V, this implies
that U(t) |kP is a.s. in D(H). The property (23) follow immediately from
lemma 3. L

7.4. Proof of Theorem 2

We deduce in this subsection the Theorem 2 on the average dynamics
from the Proposition 4 and its corollary.

Proof of statements (1) and (2). We first prove that for any
A ¥B(H), the net (CLA)L ¥ L converges ultrastrongly and the operators CL
in (35) are uniformly bounded in L. Then, by applying Corollary 3, it will
follow that the same holds for the operators FL(t), t \ 0.

Let L, LŒ ¥ L, L … LŒ and A ¥B(H) and set:

QLA= C
i, j ¥ L
CiQ j(W

g
iQ j−1) A(WiQ j−1), YL= C

i, j ¥ L
CiQ j(WiQ j−1).
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Equation (35) can be rewritten as:

CL A=iKg A− i A K+QL A+Yg
L A+A YL.

One has GL —;i, j ¥ L CiQ j(|iP+|jP)(Oi|+Oj|)Q G strongly as L ‘ L.. This
is because, by assumption (31), G is bounded and for any |kP ¥H,

||(GLŒ−GL) |kP|| [ ||((1−PL) G+G(1−PL)) |k̃P||

+> C
i ¥ L.

C
j ¥ L., j ¨ L

(CiQ j+CjQ i) |iPOi | k̃P> .

The first term in the right hand side converges to 0; so does the second,
because the sum over i converges uniformly with respect to L. Now, by
assumption B, ||F||0 <. and:

4(QLŒA−QLA)O C
i, j ¥ LŒ, i or j ¨ L

CiQ j dWiQ jÃ dWiQ j O 4 ||F||20 ||A|| F(GLŒ−GL)F.

The last inequality follows from the estimate:

(Oi|+Oj|) FÃF(|iP+|jP) [ 4 ||F||20 1 sup
k ¥ L.

C
l ¥ L.

|Ol| A |kP|22
1
2

[ 4 ||F||20 ||A||.

Similarly,4(YLŒ−YL)O F(GLŒ−GL) F. Then, by (59), the nets (YL)L ¥ L,
(Yg
L)L ¥ L and (QL A)L ¥ L in B(H) are Cauchy. Therefore they converge

respectively to Y, Yg and Q A ¥B(H). This proves that (CL A)L ¥ L and the
truncated sums in (3),

KL=
1
2i

C
i, j ¥ L
CiQ j(W

g
iQ j+1)(WiQ j−1)=

1
2 i

QL 1− i YL,

converge strongly. The same estimates show that CL and KL are uniformly
bounded in L, e.g.

||CL || [ (8 ||F||20+4) ||F G F||, K̃L O (2 ||F||20+1) F G F, L ¥ L.

By Corollary 3 and the equivalence between the strong and ultrastrong
topologies on balls in B(H), (44) FL(t) AQ e t(LH+C)A ultrastrongly, where
C A is the ultrastrong limit of (CL A)L ¥ L,

C A=− 1
2 (Q 1) A−Yg A− 1

2 A (Q 1)−A Y+Q A+Yg A+A Y

=Q A− 1
2 {Q 1, A}.
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Proof of statement (3). Let the assumptions A to D hold. A similar
proof of that of Proposition 4 shows that the operators GL(t) on B(H)
such that Ok| GL(t) A |jP=EOCL(t)k| A |CL(t) jP are equal to exp(t GL) A,
with:

GL A=SgA+A S+ C
i, j ¥ L
CiQ j((1+dW

g
iQ j) A(1+dWiQ j)−A).

It follows from the same arguments as above that (GL A)L ¥ L and thus
(GL(t) A)L ¥ L converges ultrastrongly respectively to G A and G(t) A. It has
been shown in Section 7.3 that for any |kP ¥H, (CL(t) |k̃P)L ¥ L converges
a.s.. Let C(t) |k̃P be its limit. By lemma 1 and the monotone convergence
theorem, ||C(t) |k̃P||2 ¥ L1(X, P) (its integral is equal to Ok̃| G(t) 1 |k̃P). The
operators UL(t, t0) satisfy all the axioms of RP but (RP6) and:

||UtL(y, t0) |kP|| [ ||Ct(t) |k̃P||, L ¥ L, 0 [ t0 [ y [ t, for a.e. t ¥ X.

Moreover, ||(UL(t, y) 1 é PLŒ UL(y)−UL(t)) 1 é |kP||2K is bounded from
above by the mean value E ||CL(t, y)(1−PLŒ) CL(y) |k̃P||2, and thus by
Ok̃| G(y)(1−PLŒ)(G(t− y) 1)(1−PLŒ) |k̃P. The last bound is L-independent
and tends to zero as LŒ ‘ L.. Hence, from Proposition 1, the operators
U(t, t0) satisfy all the axioms of RP but (RP6). For any |kP, |jP ¥H, the
scalar product OUL(y)j| A |UL(y) kP is bounded in absolute value by
||A|| ||C(t) |j̃P|| ||C(t) |k̃P||, which is in L2(X, P). One then obtains (34) by
applying the dominated convergence theorem. In particular,

E ||U(y) |kP||2=Ok| F(y) 1 |kP=||k||2, y \ 0.

This shows that U is a RP. L

8. CONCLUSION

We have studied in this work a model describing dissipation in
quantum systems by means of a random evolution in time. This model can
be seen as a quantum generalization of a classical kinetic model, the classi-
cal collisions being replaced by quantum jumps. The input parameters of
the models are: (1) a set of transition rates CiQ j \ 0, for all pairs (|iP, | jP)
of vectors of a given orthonormal basis {|iP, i ¥ L.} of the system’s Hilbert
space H; (2) some bounded operators WiQ j acting on H, which describe
the effect of quantum jumps and satisfy the assumption B of Section 3.1.
The random time evolution in the Hilbert space H is given by a set of
independent Poisson processes, a different Poisson process, with parameter
CiQ j, being associated to each pair (i, j). The evolution of the observables
of the system averaged over the dynamical noise is given by a quantum
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dynamical semigroup with a Lindblad generator L=LH+C given by (32).
Our main result is that under some exponential decay hypothesis on the
transition rates CiQ j and on the matrix elements of the Hamiltonian H,
together with some locality condition B on the jump operators WiQ j, the
stochastic evolution of the system is well-defined as some limit if H is
infinite dimensional and the sum ;i, j CiQ j diverges. This result can be
readily generalized to N-particles systems with one-particle Hilbert space,
provided N is finite. (51) The limit of an infinite number of particles with a
finite density (thermodynamic limit) requires, however, a more abstract
algebraic approach. (44) For aperiodic solids like strongly disordered solids,
one should define a stochastic dynamics on the Cg-algebra of the electronic
observables in second quantization, which is the crossed product of a con-
tinuous field of Cg-algebras by a groupoid. (36)

The use of Poisson processes is natural from a physical point of view,
especially if the dissipation mechanism under study is due to absorption
and emission of external particles by the system (phonons, photons,...). It
is also convenient because of its mathematical simplicity. Unlike in the
model defined by Dalibard et al. (6) and Carmichael, (7) the random time
evolution in our model linear, but not norm-preserving. The linearity
simplifies greatly the mathematical analysis. The random evolution opera-
tors can be computed directly from formula (4). The model thus provides
an example of quantum jumps scheme which is given in terms of a classical
stochastic processes and for which one can handle rigorously the case
where infinitely many orthogonal wavefunctions |iP are coupled to the
environment. The model can be applied to study electronic transport in
disordered or aperiodic solids. A simple example was given in Section 2.7.
However, a theory of linear response similar to that elaborated in refs.
25–27 is still lacking within our stochastic wavefunctions framework.
Investigation in this direction will be the object of a separate publication. (52)

APPENDIX

We prove in this appendix the Proposition 7 on the convergence of the
stochastic Hamiltonian. Let I … R be a compact interval. Define:

Ni(I)= C
j ¥ L.

NiQ j(I), Ng
i (I)= C

j ¥ L.

NjQ i(I). (A.1)

The counting functions Ni(t), N
g
i (t) are defined as in Section 2.1. (Ni(t))t ¥ R

and (Ng
i (t))t ¥ R are respectively Poisson processes of parameters Ci and C

g
i ,

with:

Ci= C
j ¥ L.

CiQ j, Cg
i= C

j ¥ L.

CjQ i. (A.2)
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Lemma 4. Let assumption (31) of Theorem 2 be satisfied. Let
n ¥Ng and iW zi be a map from L. into Rg

+ such that ;i ¥ L. zd−1i <. for
some d, 0 < d < 1. Then:

(i) if lim supi ¥ L. Ci > 0 (resp. lim supi ¥ L. C
g
i > 0), then supi ¥ L. Nn

i(I)
(resp. supi ¥ L. Ng

i (I)
n) is infinite with probability 1.

(ii) ;i ¥ L. Ni(I)n z
−1
i and ;i ¥ L. Ng

i (I)
n z −1i are finite with probability 1.

Proof. Obviously, one needs only to prove (i) for n=1. By
hypothesis, there are b > 0 and a sequence (im)m ¥N in L. such that b [ Cim
for any m ¥N. Let p be the probability that there exists an integer n
satisfying Ni(I) < n for any i ¥ L.. The Poisson processes (Ni(t))t ¥ R being
mutually independent,

p= lim
nQ.

D
i ¥ L.

P(Ni(I) < n) [ lim
nQ.

D
.

m=0
(1−P(Nim(I) \ n)). (A.3)

Let c=supi ¥ L. Ci. If n > c |I|, then

P(Nim(I) \ n)=C
.

l=n
e −Cim |I|

(Cim |I|) l

l!
\ C

.

l=n
e −b |I|

(b |I|) l

l!
> 0

for any m ¥N. Hence (A.3) implies p=0, which proves (i).
We now show (ii). For any m ¥Ng, let q (m)i =1 if Ni(I)n \ z1/mi and 0

otherwise. By the Tchebychev inequality,

E C
i ¥ L.

q (m)i = C
i ¥ L.

P(Ni(I)n \ z1/mi ) [ C
i ¥ L.

E Ni(I)mn

zi
. (A.4)

An explicit calculation shows that ENi(I)mn is a polynomial in Ci |I| of
degree mn, with coefficients independent of i. Since 0 [ Ci [ c for all i’s,
one has supi ¥ L. ENi(I)mn <.. But ;i ¥ L. z −1i <., thus E;i ¥ L. q

(m)
i is

finite. This implies that with probability one, q (m)i =0 for all i’s but a finite
number of them, say i ¥ L (m), with L (m) a random finite subset of L. (Borel
Cantelli). We may choose m \ 1/d, then:

C
i ¥ L.

Ni(I)n

zi
< C

i ¥ L(m)

Ni(I)n

zi
+ C

i ¥ L.

z1/m−1i <. (A.5)

with probability 1. Similar arguments hold for Ng
i (I). L
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Proof of Proposition 7. Let |kP ¥H and I be a finite interval con-
taining supp g. By hypothesis, ||FŒ||0=supi ;l f

−

il is finite. By writing the
norm in term of the matrix elements of ViQ j and using the assumption (53),
one obtains:

>ViQ j C
.

n=−.
g(tniQ j) |kP> [ const. NiQ j(I) C

k ¥ L.

|Ok | kP| (f −ik+f −jk)

with const.=2 ||FŒ||0 supt |g(t)|. Thus:

||OVL, gP |kP|| [ const. C
i ¥ L

C
k ¥ L.

(Ni(I)+Ng
i (I)) |Ok | kP| f −ik. (A.6)

Let i ¥ L. W zi ¥ Rg
+ be a map on L. such that b |i|d+g/4 [ zi [ c |i|d+g/2 for

sufficiently big |i|’s (b and c are positive constants). By assumption,

a2k= C
i ¥ L.

f −ikzi <. (A.7)

for any k ¥ L.. The operator A=;k ak |kPOk| is self-adjoint, positive, and
has a domain D dense in H. It follows from (A.6) and from the Cauchy–
Schwartz inequality that, if |kP ¥D,

||OVL, gP |kP|| [ const. ||FŒ||
1
2
0
1 C
i ¥ L.

(Ni(I)+Ng
i (I))

2 z −1i 2
1
2

||A |kP||.

(A.8)

The map iW zi satisfies the assumptions of the lemma above if
g > 4 d d/(1−d). Therefore the sum over i is finite with probability 1.
Given L, LŒ ¥ L, L … LŒ, a similar estimate gives:

||(OVLŒ, gP−OVL, gP) |kP||

[ 2 const. ||FŒ||
1
2
0
1 C
i ¥ LŒ0L

(Ni(I)+Ng
i (I))

2 z −1i 2
1
2

||A |kP||. (A.9)

By the almost sure convergence of the series ;i ¥ L. (Ni(I)+Ng
i (I))

2 z −1i ,
this proves that the left hand side tends to zero with probability one as
L, LŒ ‘ L.. Therefore the net (OVL, gP |kP)L ¥ L is Cauchy and thus con-
verges. The estimate (54) follows from (A.8). L
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Let us show that OV, gP may be unbounded with probability one. We
assume that ViQ j=p |iPOi| and that lim supi ¥ L. Ci > 0 for any i, j ¥ L.. If
g(t) is a positive function equal to 1 on a finite interval I … R, then:

lim
L ‘ L.

||OVL, gP|| \ sup
k ¥ L.

> C
i, j ¥ L, n ¥ Z

g(t− tniQ j) ViQ j |kP> \ p sup
k ¥ L.

Nk(I).

By the lemma above, the right hand side is infinite with probability one.
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